首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different amounts and various types of bis-dinuclear tetradentate molybdate complexes of D-erythro-L-manno-octose, D-erythro-L-gluco-octose, D-erythro-L-manno-octitol and D-erythro-L-gluco-octitol were characterized by 1H and 13C NMR spectroscopy in aqueous solutions. Detailed analysis of 1H-(1)H coupling constants and NOEs, together with chemical shifts, allowed characterization of the different isomers of these complexes.  相似文献   

2.
It was found by 1H and 13C NMR spectroscopy that the Schiff base, 2-deoxy-2-(2-hydroxybenzaldimino)-D-glucopyranose exhibits enol-imine-keto-amine and anomeric equilibria in methanolic, and in dimethyl sulfoxide solutions. The reaction of the Schiff base with nickel acetate gave the bidentate, mononuclear Ni(II) complex that was characterized by spectroscopic methods and by cyclic voltammetry. The coordination of the Schiff base to the metal is through the enol-imine tautomeric form, and the anomeric equilibrium remains in dimethyl sulfoxide solutions. This complex was also obtained by reaction of D-glucosamine with Ni(II) salicylaldehydate. The same reaction was employed for the synthesis of bis-N-[2-deoxy-D-galactopyranosyl-2-(2-hydroxybenzaldiminate)]Ni(II). The small paramagnetic shifts of the 1H NMR resonances of the complexes suggest that paramagnetic species are present in low proportions.  相似文献   

3.
Two isomeric cholesteryl galactosides, cholesteryl beta-D-galactofuranoside and -pyranoside, have been synthesized by the Koenigs-Knorr reaction. Glycosylation of cholesterol with 2,3,5,6-tetra-O-benzoyl-D-galactofuranosyl bromide, followed by Zemplén saponification with sodium methoxide, gave cholesteryl beta-D-galactofuranoside. By using 2,3,4,6-tetra-O-acetyl-D-galactopyranosyl bromide as the glycosyl donor, followed by alkaline hydrolysis, cholesteryl beta-D-galactopyranoside was obtained. The title compounds were characterized by their IR spectra and by their (1)H and (13)C NMR spectra. Structure considerations of the two cholesteryl galactosides correlated with data in the literature, thus confirming that cholesteryl beta-D-galactopyranoside is an antigenic lipid of Lyme disease agent, Borrelia burgdorferi.  相似文献   

4.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

5.
Interaction of l-lysine with Co(II) and Cu(II) ions has been studied using 1H- and 13C-NMR and solution absorption spectrometry. In l-lysine-Co2+ solution in D2O (100: 1 in concentration), coordination interaction of the α-amino and carboxyl groups with Co2+ occurs from the neutral to alkaline pD region, whereas no interaction of the ?-amino group was observed throughout the whole pD region. On the other hand, in l-lysine-Cu2+ solution, the ?-amino group also takes part in complexation in the higher pD region (pD≧10). Structural changes in complexation of l-lysine with the divalent cations along with pD variations in aqueous solution are discussed. Dissociation constants of the three functional groups were obtained by 1H-NMR chemical shifts; pKa1 = 2.2, pKa2 = 9.5 and pKa3 = 11.2.  相似文献   

6.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O43:H28 and studied by sugar and methylation analyses, Smith degradation and 1H and 13C NMR spectroscopy, including 2D ROESY, and H-detected 1H, 13C HSQC and HMBC experiments, as well as a NOESY experiment in a 9:1 H2O/D2O mixture to reveal correlations for NH protons. It was found that the polysaccharide is built up of linear tetrasaccharide repeating units containing an amide of D-galacturonic acid with L-serine [D-GalA6(L-Ser)] and has the following structure:[3)-beta-D-GalpA6(L-Ser)-(1-->3)-beta-D-GlcpNAc-(1-->2)-alpha-D-Rhap4NAc-(1-->4)-beta-D-GlcpA-(1-->]n.  相似文献   

7.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

8.
The structure of the O-polysaccharide of Proteus mirabilis CCUG 10705 (OF) was determined by chemical analyses along with one- and two-dimensional (1)H and (13)C NMR spectroscopy. The polysaccharide was found to contain an amide of D-galacturonic acid with L-alanine and based on the uniqueness of the O-polysaccharide structure and serological data, it was suggested to classify P. mirabilis OF into a new separate Proteus serogroup, O74. A weak cross-reactivity of P. mirabilis OF and P. mirabilis O5 was observed and accounted for by a similarity of their O-repeating units. The following structure of the polysaccharide of P. mirabilis OF was established: [chemical structure: see text]  相似文献   

9.
A quantitative evaluation of 20 second-generation carbohydrate force fields was carried out using ab initio and density functional methods. Geometry-optimized structures (B3LYP/6-31G(d)) and relative energies using augmented correlation consistent basis sets were calculated in gas phase for monosaccharide carbohydrate benchmark systems. Selected results are: (i). The interaction energy of the alpha-d-glucopyranose.H(2)O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error in this respect; (ii). The (3)E envelope (south) pseudorotational conformer of methyl 5-deoxy-beta-d-xylofuranoside is 0.66 kcal/mol more stable than the (3)E envelope (north) conformer and the alpha-anomer of methyl d-glucopyranoside is 0.82 kcal/mol more stable than the beta-anomer; (iii). The relative energies of the (gg, gt and tg) rotamers of methyl alpha-d-glucopyranoside and methyl alpha-d-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol, respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second-generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase monosaccharide systems.  相似文献   

10.
1,6-Diamino-1,6-dideoxy-2,3,4,5-tetra-O-methyl-D-mannitol (and its L-iditol analogue) suitable for their utilization as monomers in the preparation of linear polyamides are described. Regio- and stereoregular polyamides of the AABB-type have been prepared by the active ester polycondensation method from these C(2) symmetric monomers and suberic and dodecanedioic acids. The resulting polyamides were obtained in fair yields (70-60%) and were characterized by elemental analyses and infrared and 1H and 13C NMR spectroscopies. Their M(w) and M(w)/M(n) were determined by GPC relative to polystyrene standards. All of them were gummy non-crystalline solids.  相似文献   

11.
D-Hamamelose, a branched-chain ribose (2-C-(hydroxymethyl)-D-ribose), has been synthesized and its solid-state structure analyzed by (13)C CP MAS NMR spectra and X-ray data. The presence of the complex pattern of resonances in the anomeric region, as well as in the ring carbon region, in (13)C CP MAS NMR spectrum indicated that the mixture of four cyclic forms, alpha- and beta-furanoses, as well as both alpha- and beta-pyranoses were present in the solid-state. X-ray analysis of crystals showed that D-hamamelose belongs to the monoclinic system with unit cell: a=4.790A, b=8.671A, c=8.880A and beta=98.89 degrees , space group P2(1). The furanose ring has the (2)E conformation.  相似文献   

12.
Parameterization of the phi and omega torsion angles in pyranosidic saccharides was performed based on density functional theory calculations. The modified CHARMM force field, which is referred to as PARM22/SU01, was tested on a glucosyl trisaccharide. A molecular dynamics simulation of the oligosaccharide with explicit water as solvent was performed to investigate the conformational flexibility. Protonz.sbnd;proton distances and heteronuclear spin-spin coupling constants were calculated from the trajectories and showed good agreement to those previously determined by NMR spectroscopy.  相似文献   

13.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

14.
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations.  相似文献   

15.
D-Glucosone 6-phosphate (D-arabino-hexos-2-ulose 6-(dihydrogen phosphate)) was prepared from D-glucosone (D-arabino-hexos-2-ulose) by enzymatic conversion with hexokinase. The isomeric composition of D-glucosone 6-phosphate in aqueous solution was quantitatively determined by NMR spectroscopy and compared to D-glucosone. The main isomers are the alpha-anomer (58%) and the beta-anomer (28%) of the hydrated pyranose form, and the beta-D-fructofuranose form (14%).  相似文献   

16.
The syntheses have been developed for quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)ammonium salts derived from five aromatic amines, pyridine, 2-methylpyridine, 3-carbamoylpyridine, 4-(N,N-dimethylamino)pyridine, and quinoline, as well as two tertiary aliphatic amines, trimethylamine and triethylamine. Reactions of 1,4-anhydro-2,3-O-isopropylidene-5-O-tosyl-D,L-ribitol with tri-n-propylamine and tri-n-butylamine were unsuccessful. The products were identified on the basis of their 1H and 13C NMR spectra. The structure of N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)trimethylammonium tosylate was additionally elucidated by X-ray diffractometry.  相似文献   

17.
Methyl 1,2,4-tri-O-acetyl-3-O-benzyl-L-idopyranuronate 6beta/6alpha, prepared from methyl 3-O-benzyl-L-iduronate (4), is a key synthon in heparin/heparan sulfate synthesis. The 1H and 13C NMR spectra of the furanose-pyranose mixture of 4, after dissolution and equilibration in d(4)-methanol, were fully assigned allowing to expect that 4 could crystallise in the beta-pyranose form. New acetylation conditions able to trap this form were subsequently devised, allowing the isolation of 83% of pure 6beta by simple crystallisation, along with 9% of the 6beta/6alpha mixture. This represents a major advantage over the previously published procedure, especially on multigram scales.  相似文献   

18.
19.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

20.
Oxidation of l-serine and l-threonine by a silver(III) complex anion, [Ag(HIO(6))(2)](5-), has been studied in aqueous alkaline medium. The oxidation products of the amino acids have been identified as ammonia, glyoxylic acid and aldehyde (formaldehyde for serine and acetaldehyde for threonine). Kinetics of the oxidation reactions has been followed by the conventional spectrophotometry in the temperature range of 20.0-35.0 degrees C and the reactions display an overall second-order behavior: first-order with respect to both Ag(III) and the amino acids. Analysis of influences of [OH(-)] and [periodate] on the second-order rate constants k' reveals an empirical rate expression: k(')=(k(a)+k(b)[OH(-)])K(1)/([H(2)IO(6)(3-)](e)+K(1)), where [H(2)IO(6)(3-)](e) is equilibrium concentration of periodate, and where k(a)=6.1+/-0.5M(-1)s(-1), k(b)=264+/-6M(-2)s(-1), and K(1)=(6.5+/-1.3)x10(-4)M for serine and k(a)=12.6+/-1.7M(-1)s(-1), k(b)=(5.5+/-0.2)x10(2)M(-2)s(-1), and K(1)=(6.2+/-1.5)x10(-4)M for threonine at 25.0 degrees C and ionic strength of 0.30M. Activation parameters associated with k(a) and k(b) have also been derived. A reaction mechanism is proposed to involve two pre-equilibria, leading to formation of an Ag(III)-periodato-amino acid ternary complex. The ternary complex undergoes a two-electron transfer from the coordinated amino acid to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion. Potential applications of the Ag(III) complex as a reagent for modifications of peptides and proteins are implicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号