首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since hydroperoxide specificity of lipoxygenase (LO) is poorly understood at present, we investigated the ability of cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBHP) to support cooxidase activity of the enzyme toward the selected xenobiotics. Considering the fact that in the past, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases, in this study, we investigated the ability of non-heme iron proteins, namely soybean LO (SLO) and human term placental LO (HTPLO) to mediate N-demethylation of phenothiazines. In addition to being dependent on peroxide concentration, the reaction was dependent on enzyme concentration, substrate concentration, incubation time, and pH of the medium. Using Nash reagent to estimate formaldehyde production, the specific activity under optimal assay conditions for the SLO mediated N-demethylation of chlorpromazine (CPZ), a prototypic phenothiazine, in the presence of TBHP, was determined to be 117+/-12 nmol HCHO/min/mg protein, while that of HTPLO was 3.9+/-0.40 nmol HCHO/min/mg protein. Similar experiments in the presence of CHP yielded specific activities of 106+/-11 nmol HCHO/min/mg SLO, and 3.2+/-0.35 nmol HCHO/min/mg HTPLO. As expected, nordihydroguaiaretic acid and gossypol, the classical inhibitors of LOs, as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of formaldehyde production from CPZ by SLO in the reaction media fortified with either CHP or TBHP. Besides chlorpromazine, both SLO and HTPLO also mediated the N-demethylation of other phenothiazines in the presence of these organic hydroperoxides.  相似文献   

2.
Since hydroperoxide specificity of lipoxygenase (LO) is poorly understood at present, we investigated the ability of cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBHP) to support cooxidase activity of the enzyme toward the selected xenobiotics. Considering the fact that in the past, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases, in this study, we investigated the ability of non-heme iron proteins, namely soybean LO (SLO) and human term placental LO (HTPLO) to mediate N-demethylation of phenothiazines. In addition to being dependent on peroxide concentration, the reaction was dependent on enzyme concentration, substrate concentration, incubation time, and pH of the medium. Using Nash reagent to estimate formaldehyde production, the specific activity under optimal assay conditions for the SLO mediated N-demethylation of chlorpromazine (CPZ), a prototypic phenothiazine, in the presence of TBHP, was determined to be 117±12 nmol HCHO/min/mg protein, while that of HTPLO was 3.9±0.40 nmol HCHO/min/mg protein. Similar experiments in the presence of CHP yielded specific activities of 106±11 nmol HCHO/min/mg SLO, and 3.2±0.35 nmol HCHO/min/mg HTPLO. As expected, nordihydroguaiaretic acid and gossypol, the classical inhibitors of LOs, as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of formaldehyde production from CPZ by SLO in the reaction media fortified with either CHP or TBHP. Besides chlorpromazine, both SLO and HTPLO also mediated the N-demethylation of other phenothiazines in the presence of these organic hydroperoxides.  相似文献   

3.
A hypothesis that lipoxygenase may mediate N-dealkylation of xenobiotics was investigated using the prototype drug aminopyrine and soybean lipoxygenase as a model enzyme in the presence of hydrogen peroxide. Formaldehyde production as a result of N-demethylation of aminopyrine exhibited pH optimum of 6.5. The reaction was dependent on the incubation time, amount of enzyme, and concentration of aminopyrine and hydrogen peroxide. Under the experimental conditions employed, the specific activity for N-demethylation of aminopyrine was found to be 823 ± 93 nmoles per min/mg protein or 89 ± 10 nmoles per min/nmole of enzyme. The reaction was significantly inhibited by nordihydroguaiaretic acid and gossypol, the classical inhibitors of lipoxygenase. Spectrophotometric analyses indicated the generation of a nitrogen-centered free-radical cation as the initial oxidation product of aminopyrine. The rate of accumulation of this radical species was also dependent on pH, the amount of enzyme, and concentration of aminopyrine and hydrogen peroxide. The radical production was markedly suppressed by ascorbate, glutathione, and dithiothreitol in a concentration-dependent manner. Preliminary data gathered for the oxidation of other chemicals indicated that the lipoxygenase exhibits a unique substrate specificity. Collectively, the evidence presented suggests for the first time that lipoxygenase pathway may be involved in N-demethylation of aminopyrine and other chemicals. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 175–183, 1998  相似文献   

4.
Deuterium isotope effects on the kinetic parameters for the hydroperoxide-supported N-demethylation of N,N-dimethylaniline catalyzed by chloroperoxidase and horseradish peroxidase were determined using N,N-di-(trideuteromethyl)aniline. The isotope effect on the Vmax for the chloroperoxidase-catalyzed demethylation reaction supported by ethyl hydroperoxide was 1.42 +/- 0.31. The isotope effects on the Vmax for the horseradish peroxidase-catalyzed reaction supported by ethyl hydroperoxide and hydrogen peroxide were 1.99 +/- 0.39 and 4.09 +/- 0.27, respectively. Isotope effects ranging from 1.76 to 5.10 were observed on the Vmax/Km for the hydroperoxide substrate (i.e. the second order rate constant for the reaction of the hydroperoxide with the peroxidase to form compound I) in both enzyme systems when the N-methyl groups of N,N-dimethylaniline were deuterated. These results are not predicted by the simple ping-pong kinetic model for peroxidase-catalyzed N-demethylation reactions. The data are most simply explained by a mechanism involving the transfer of deuterium (or hydrogen) from N,N-dimethylaniline to the enzyme during catalysis. The deuterium must subsequently be displaced from the enzyme by the hydroperoxide, causing the observed isotope effects.  相似文献   

5.
The effect of D2O on the kinetic parameters for the hydroperoxide-supported N-demethylation of N,N-dimethylaniline catalyzed by chloroperoxidase and horseradish peroxidase was investigated in order to assess the roles of exchangeable hydrogens in the demethylation reaction. The initial rate of the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide exhibited a pL optimum (where L denotes H or D) of 4.5 in both H2O and D2O. The solvent isotope effect on the initial rate of the chloroperoxidase-catalyzed demethylation reaction was independent of pL, suggesting that the solvent isotope effect is not due to a change in the pK of a rate-controlling ionization in D2O. The solvent isotope effect on the Vmax for the chloroperoxidase-catalyzed demethylation reaction was 3.66 +/- 0.62. In contrast, the solvent isotope effect on the Vmax for the horseradish peroxidase catalyzed demethylation reaction was approximately 1.5 with either ethyl hydroperoxide or hydrogen peroxide as the oxidant, indicating that the exchange of hydrogens in the enzyme and hydroperoxide for deuterium in D2O has little effect on the rate of the demethylation reaction. The solvent isotope effect on the Vmax/KM for ethyl hydroperoxide in the chloroperoxidase-catalyzed demethylation reaction was 8.82 +/- 1.57, indicating that the rate of chloroperoxidase compound I formation is substantially decreased in D2O. This isotope effect is suggested to arise from deuterium exchange of the hydroperoxide hydrogen and of active-site residues involved in compound I formation. A solvent isotope effect of 2.96 +/- 0.57 was observed on the Vmax/KM for N,N-dimethylaniline in the chloroperoxidase-catalyzed reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This work describes the application of the N-demethylase activity of immobilized soybean lipoxygenase to the oxidative degradation of xenobiotics. Previously (1) we have shown that immobilized lipoxygenase produces the oxidative degradation of CPZ in the presence of hydrogen peroxide. As a continuation of this work, here we studied the N-demethylation of CPZ by the hydroperoxidase activity of covalent immobilized soybean lipoxygenase. The obtained results clearly reveal that the immobilized system produces the N-demethylation of CPZ in the presence of hydrogen peroxide, maintaining a high level of activity in comparison with free enzyme. Additionally, the immobilized lipoxygenase shows stability higher than that of free enzyme, making feasible its use in a bioreactor operating in continuous or discontinuous mode. The results obtained in this work, together with those obtained previously by us for the oxidation of CPZ, suggest that hydroperoxidase activity of immobilized lipoxygenase may constitute a valuable tool for oxidative xenobiotics degradation or for application to synthetic processes in which a N-demethylation reaction is involved.  相似文献   

7.
Oxidative N-demethylation was measured by incubation experiments using Bacillus megaterium isolated from topsoil as a biocatalyst for the N-demethylation of the N,N-dialkylarylamines N,N-dimethylaniline and N-ethyl-N-methylaniline. Formed formaldehyde, normally difficult to analyse in biological systems because of further metabolization, was successfully trapped and converted into thiazolidine by addition of cysteamine into the incubation media. Studies using N,N-di-(trideutero-methyl)-aniline and N-ethyl-N-(trideuteromethyl)-aniline as well as N,N-di-[methyl-(13)C]-aniline and N-ethyl-N-[methyl-(13)C]-aniline were performed to confirm that the N-demethylation proceeds via formaldehyde.  相似文献   

8.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

9.
1. Palmitoyl-CoA synthetase activity was assayed in subfractions of control and Quaking, Jimpy, Shiverer and Trembler mouse brain. 2. Mouse brain palmitoyl-CoA synthetase activity is not altered during myelination. 3. Mouse brain enzyme activity (homogenate 1.5 +/- 0.3 nmol palmitoyl carnitine/min/per mg protein crude mitochondria 0.6 +/- 0.1 nmol/min/per mg protein and microsomes 1.9 +/- 0.3 nmol/min/per mg protein) does not differ markedly from rat and rabbit brain activity. 4. The lesions of the above mutants which affect myelination and lipid synthesis do not include the enzyme palmitoyl-CoA synthetase.  相似文献   

10.
In this study, we examined the ability of human term placental lipoxygenase (HTPLO) to catalyze glutathione (GSH) conjugate formation from ethacrynic acid (EA) in the presence of linoleic acid (LA) and GSH. HTPLO purified by affinity chromatography was used in all the experiments. The results indicate that the process of EA-SG is enzymatic in nature. The reaction shows dependence on pH, the enzyme, and the concentration of GSH, LA, and EA. The optimal assay conditions to observe a maximal rate of EA-SG formation required the presence of 0.3 mM LA, 0.2 mM EA, 2.0 mM GSH, and approximately 300 microg HTPLO in the reaction medium buffered at pH 9.0. Under the experimental conditions employed, the reaction exhibited K(m) values of 1.1 mM, 200 microM, and 130 microM for GSH, LA, and EA, respectively. The estimated specific activity of HTPLO-catalyzed EA-GS formation was approximately 4.4 +/- 0.4 micromol/min/mg protein. This rate is more than twofold greater than the rate noted for the reaction mediated by the purified human term placental glutathione transferase. Under physiologically relevant conditions (20 microM LA, 2.0 mM GSH, at pH 7.4), HTPLO produced EA-SG at 56% of the maximal rate noted under optimal assay conditions. Nordihydroguaiaretic acid, the classical inhibitor of different lipoxygenases, significantly blocked the reaction. It is proposed that free radicals are involved in the process of EA-SG formation by HTPLO. The evidence gathered in this in vitro study suggests for the first time that lipoxygenase present in the human term placenta is capable of EA-SG formation.  相似文献   

11.
The oxidative demethylation of the model substrate ethylmorphine has been characterized for the first time in the liver of a fish (Poecilia reticulata). The enzyme showed maximal activity at 35 degrees C and pH values higher than 8. The values of Km and Vmax for the reaction were 0.83 +/- 0.11 mM and 4.64 +/- 0.81 nmol HCHO/(mg microsomal protein) per min. The activity is attributed to the cytochrome P-450-dependent monoxygenase system, since it is inhibited by CO and requires NADPH; moreover it is inhibited competitively by alpha-naphthoflavone and non-competitively by metyrapone. The enzyme activity is induced by a two-week treatment of fish with phenobarbital and may be associated with a protein band of Mr 54,000.  相似文献   

12.
To investigate the antioxidative capacities of oligodendrocytes, rat brain cultures enriched for oligodendroglial cells were prepared and characterized. These cultures contained predominantly oligodendroglial cells as determined by immunocytochemical staining for the markers galactocerebroside and myelin basic protein. If oligodendroglial cultures were exposed to exogenous hydrogen peroxide (100 micro m), the peroxide disappeared from the incubation medium following first order kinetics with a half-time of approximately 18 min. Normalization of the disposal rate to the protein content of the cultures by calculation of the specific hydrogen peroxide detoxification rate constant revealed that the cells in oligodendroglial cultures have a 60% to 120% higher specific capacity to dispose of hydrogen peroxide than cultures enriched for astroglial cells, microglial cells or neurones. Oligodendroglial cultures contained specific activities of 133.5 +/- 30.4 nmol x min(-1) x mg protein(-1) and 27.5 +/- 5.4 nmol x min(-1) x mg protein(-1) of glutathione peroxidase and glutathione reductase, respectively. The specific rate constant of catalase in these cultures was 1.61 +/- 0.54 min(-1) x mg protein(-1). Comparison with data obtained by identical methods for cultures of astroglial cells, microglial cells and neurones revealed that all three of the enzymes which are involved in hydrogen peroxide disposal were present in oligodendroglial cultures in the highest specific activities. These results demonstrate that oligodendroglial cells in culture have a prominent machinery for the disposal of hydrogen peroxide, which is likely to support the protection of these cells in brain against peroxides when produced by these or by surrounding brain cells.  相似文献   

13.
Cocaine N-demethylation by microsomal cytochrome P450s is the principal pathway in cocaine bioactivation and hepatotoxicity. P450 isozymes involved in N-demethylation of cocaine have not been elucidated yet and they differ from species to species. In humans and mice, P4503A contributes to cocaine N-demethylase activity, whereas in rats, both P4503A and P4502B participate. In the present study, contribution of different P450 isozymes to cocaine N-demethylase activity was studied in vitro with fish liver microsomes. The specific cocaine N-demethylase activity was found to be 0.672 +/- 0.22 nmol formaldehyde formed/min/mg protein (mean +/- SD, n = 6). Cocaine N-demethylase exhibited biphasic kinetics, and from the Lineweaver-Burk plot, two K(m) values were calculated as 0.085 and 0.205 mM for the high- and low-affinity enzyme. These results indicate that N-demethylation of cocaine in mullet liver microsomes is catalyzed by at least two cytochrome P450 isozymes. Inhibitory effects of cytochrome P450 isozyme-selective chemical inhibitors, ketoconazole, cimetidine, SKF-525A, and quinidine, on cocaine N-demethylase activity were studied at 50, 100, and 500 micro M concentrations of these inhibitors. At 100 micro M final concentrations, ketoconazole (P4503A inhibitor), SKF-525A (inhibitor of both P4502B and P4503A), and cimetidine (P4503A inhibitor) inhibited N-demethylation activity by 73, 69, and 63%, respectively. Quinidine, P4502D-specific inhibitor, at 100 micro M final concentration, reduced N-demethylation activity down to 64%. Aniline, a model substrate for P4502E1, did not alter N-demethylase activity in the final concentration of 100 micro M. IC(50) values were calculated to be 20 micro M for ketoconazole, 48 micro M for cimetidine (both specific P4503A inhibitors), 164 micro M for quinidine (P4502D inhibitor), and 59 micro M for SKF-525A (inhibitor of both P4503A and P4502B). The contribution of P4502B to cocaine N-demethylase activity in mullet liver microsomes was further explored by the use of purified mullet cytochrome P4502B in the reconstituted system containing purified mullet P450 reductase and lipid. The turnover number was calculated as 4.2 nmol HCOH/(min nmol P450). Overall, these results show that P4503A and P4502B are the major P450s responsible for N-demethylation of cocaine, whereas contribution of P4502D is a minor one, and P4502E1 is not involved in the N-demethylation of cocaine in mullet liver microsomes.  相似文献   

14.
Lipoxygenase metabolism of arachidonic acid was compared between peritoneal macrophages from untreated rats and those from rats on day 7 after intraperitoneal injection of thioglycollate broth (TG). Resident macrophages (M phi) from untreated rats produced mainly LTB4 (303 +/- 25 pmol/5 x 10(6) cells) and 5-HETE (431 +/- 56 pmol/5 x 10(6) cells) when stimulated with 5 micrograms/ml calcium ionophore A23187 for 20 min at 37 degrees C. On the other hand, TG-elicited M phi generated less amounts of lipoxygenase metabolites (157 +/- 10 pmol LTB4 and 319 +/- 19 pmol 5-HETE/5 x 10(6) cells) with the same stimulus. Then, leukotriene productivity was examined by using subcellular fractions of each M phi lysate and an unstable epoxide intermediate, leukotriene A4. LTA4 hydrolase activity was mainly contained in soluble fractions from the both groups of M phi. The cytosol fraction from the resident M phi exhibited the following specific and total activity; 2.2 +/- 0.1 nmol LTB4/mg protein/5 min and 12.2 +/- 0.5 nmol LTB4/5 min per 10(8) cells. On the contrary, the cytosol fraction from the TG-elicited M phi showed 1.9 +/- 0.1 nmol LTB4/mg protein/5 min and 9.6 +/- 0.3 nmol LTB4/5 min per 10(8) cells. The resident M phi, however, generated 0.14 +/- 0.04 nmol O2-/min/4 x 10(5) cells whereas the TG-elicited M phi did 0.49 +/- 0.13 nmol O2-/min/4 x 10(5) cells when stimulated with wheat germ lectin. These results suggest that the TG-elicited macrophages show enhanced superoxide production but generate less lipoxygenase metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Plant constituents such as terpenes are major constituents of the essential oil in Eucalyptus sp. 1,8-Cineole and p-cymene (Terpenes present in high amounts in Eucalyptus leaves) are potential substrates for the CYP family of enzymes. We have investigated tolbutamide hydroxylase as a probe substrate reaction in both koala and terpene pretreated and control brushtail possum liver microsomes and examined inhibition of this reaction by Eucalyptus terpenes. The specific activity determined for tolbutamide hydroxylase in the terpene treated brushtails was significantly higher than that for the control animals (1865+/-334 nmol/mg microsomal protein per min versus 895+/-27 nmol/mg microsomal protein per min). The activity determined in koala microsomes was 8159+/-370 nmol/mg microsomal protein per min. Vmax values and Km values for the terpene treated possum, control, possum and koala were 1932-2225 nmol/mg microsomal protein per min and 0.80 0.81 mM; 1406-1484 nmol/mg microsomal protein per min and 0.87-0.92 mM and 5895-6403 nmol/mg microsomal protein per min and 0.067-0.071 mM, respectively. Terpenes were examined as potential inhibitors of tolbutamide hydroxylase activity. 1,8-Cineole was found to be a competitive inhibitor for the enzyme responsible for tolbutamide hydroxylation (Ki 15 microM) in the possum. In koala liver microsomes stimulation of tolbutamide hydroxylase activity was observed when concentrations of cineole were increased. Therefore, although inhibition was observed, the type of inhibition could not be determined.  相似文献   

16.
Pyocyanin is a redox active virulence factor produced by the human pathogen Pseudomonas aeruginosa. Treatment of endothelial cells with pyocyanin (1-50 microM) resulted in the dose-dependent formation of hydrogen peroxide that was detected in the extracellular medium. Total intracellular glutathione levels decreased in response to pyocyanin in a dose-dependent manner from a control value of 19.9 +/- 2.7 nmol/mg protein to 10.0 +/- 2.4 nmol/mg protein. Prior treatment of cells with catalase afforded complete protection against loss of glutathione. Total intracellular soluble thiols decreased from 95.0 +/- 6.2 nmol/mg protein to 78.6 +/- 2.3 nmol/mg protein at the highest test dose. Intracellular levels of NADPH increased up to 2.4-fold in response to pyocyanin exposure. It is concluded that pyocyanin exposes endothelial cells to oxidative stress by the generation of hydrogen peroxide, which subsequently depletes intracellular glutathione and increases intracellular levels of mixed disulfides.  相似文献   

17.
1. The primary intermediate of catalase and hydrogen peroxide was identified and investigated in peroxisome-rich mitochondrial fractions of rat liver. On the basis of kinetic constants determined in vitro, it is possible to calculate with reasonable precision the molecular statistics of catalase action in the peroxisomes. 2. The endogenous hydrogen peroxide generation is adequate to sustain a concentration of the catalase intermediate (p(m)/e) of 60-70% of the hydrogen peroxide saturation value. Total amount of catalase corresponds to 0.12-0.15nmol of haem iron/mg of protein. In State 1 the rate of hydrogen peroxide generation corresponds to 0.9nmol/min per mg of protein or 5% of the mitochondrial respiratory rate in State 4. 3. Partial saturation of the catalase intermediate with hydrogen peroxide (p(m)/e) in the mitochondrial fraction suggests its significant peroxidatic activity towards its endogenous hydrogen donor. A variation of this value (p(m)/e) from 0.3 in State 4 to 0 under anaerobic conditions is observed. 4. For a particular preparation the hydrogen peroxide generation rate in the substrate-supplemented State 4 corresponds to 0.17s(-1) (eqn. 6), the hydrogen peroxide concentration to 2.5nm and the hydrogen-donor concentration (in terms of ethanol) to 0.12mm. The reaction is 70% peroxidatic and 30% catalatic. 5. A co-ordinated production of both oxidizing and reducing substrates for catalase in the mitochondrial fraction is suggested by a 2.2-fold increase of hydrogen peroxide generation and a threefold increase in hydrogen-donor generation in the State 1 to State 4 transition. 6. Additional hydrogen peroxide generation provided by the urate oxidase system of peroxisomes (8-12nmol of uric acid oxidized/min per mg of protein) permits saturation of the catalase with hydrogen peroxide to haem occupancy of 40% compared with values of 36% for a purified rat liver catalase ofk(1)=1.7x10(7)m(-1).s(-1) and k'(4)=2.6x10(7)m(-1). s(-1)(Chance, Greenstein & Roughton, 1952). 7. The turnover of the catalase ethyl hydrogen peroxide intermediate (k'(3)) in the peroxisomes is initially very rapid since endogenous hydrogen peroxide acts as a hydrogen donor. k'(3) decreases fivefold in the uncoupled state of the mitochondria.  相似文献   

18.
The release of hydrogen peroxide from human blood platelets after stimulation with particulate membrane-perturbing agents has been determined by fluorescence using scopoletin as the detecting agent. Platelet suspensions containing less than 1 polymorphonuclear leukocyte/108 platelets showed a significant release of hydrogen peroxide (6.11 nmol/109 platelets per 20 min, S.D., 0.26, n=9) after addition of zymosan or latex particles, compared to unstimulated platelets. The release of hydrogen peroxide was only observed when the scopoletin was added to the platelet suspensions during the stimulation. Any attempt to determine hydrogen peroxide release in the supernatant at the end of the incubation with zymosan or latex failed. A NADH-dependent production of hydrogen peroxide was observed by measuring the difference of oxygen uptake in the presence and absence of catalase (500 units), which was not inhibited by potassium cyanide (1 mM). By this method the NADH-dependent cyanide-insensitive peroxide production and release was 6.0 nmol/109 platelets per 20 min from resting platelets (S.D., 2, n=6) vs. 15 nmol/109 platelets per 20 min from stimulated platelets (S.D., 2, n=6).  相似文献   

19.
Hyperoxia enhances lung and liver nuclear superoxide generation   总被引:3,自引:0,他引:3  
Porcine lung and liver nuclei generated superoxide (O-2) at a rate which increased with increasing oxygen concentration. NADH-dependent O-2 generation increased from 0 to 2.21 +/- 0.11 nmol/min per mg protein for lung nuclei and from 0.16 +/- 0.09 to 1.34 +/- 0.14 nmol/min per mg protein for liver nuclei, when oxygen concentration increased from 0 to 100%. NADPH-dependent O-2 generation increased similarly in liver nuclei (from 0.20 +/- 0.09 to 1.20 +/- 0.12 nmol/min per mg protein), while lung nuclei produced only 0.45 +/- 0.09 nmol/min per mg protein at 100% oxygen. NADH and NADPH had an additive effect on O-2 generation by liver nuclei, yielding 2.58 +/- 0.21 nmol/min per mg protein at 100% oxygen. Very little or no superoxide dismutase activity was present in washed nuclear preparations. The oxygen-dependence of nuclear O-2 generation shows that nuclear-derived partially reduced species of oxygen may affect nuclear function during hyperoxia or other metabolic situations where overproduction of oxygen radicals is problematic.  相似文献   

20.
The activities of several enzymes which metabolize xenobiotics were measured and compared in freshly isolated rabbit Clara cells (50–70% purity) and alveolar type II cells (80–95% purity) or microsomal preparations from the isolated cell fractions. The presence of 1 mM nicotinamide in protease and cell isolation buffers increased significantly 7-ethoxycoumarin (7-EC) deethylase and epoxide hydrolase activities in the isolated Clara and type II cells. Isolated Clara cell fractions metabolized 7-EC to umbelliferone at a rate of 241 ± 27 pmoles/mg prot/min (mean ± S.E., N=5), while the 7-EC deethylation rate in type II cells was 111 ± 15 pmoles/mg prot/min. Coumarin hydroxylation activity, however, was more than ten times greater in the Clara cells than in the type II cells on a per mg cellular protein basis. N-oxidation of N,N-dimethylaniline, catalyzed by a flavin monooxygenase, was about 2 times as great in microsomes of Clara cells as in microsomes of type II cells. Epoxide hydrolase activity with benzo(a)pyrene 4,5-oxide as substrate was about 10 times higher in Clara cells than in type II cells. Because of the greater cellular, structural and functional heterogeneity in lung, differential distribution of enzymes responsible for xenobiotic metabolism in this tissue may contribute to cell selective chemical toxicity and carcinogenesis.Abbreviations 7-EC 7-ethoxycoumarin - DMA N,N-dimethylaniline  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号