首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PEM1 and PEM2 are structural genes for the yeast phosphatidylethanolamine methylation pathway which mediates the three-step methylation of phosphatidylethanolamine to phosphatidylcholine. Selective disruption of each locus in the yeast genome was performed using the in-vitro-inactivated gene with insertion of yeast LEU2 or HIS3. Complementation test and spore analysis indicated that the disruptants were allelic with our previous mutants that were isolated by chemical mutagenesis and used for the cloning of PEM1 and PEM2. The methyltransferase activities of the disruptants were assayed using their membrane fractions. When the PEM1 locus was disrupted, the activity for the first methylation was greatly decreased but was still detectable, while the activities for the second and third methylations were well retained. The remaining three activities exhibited nearly identical pH optima and apparent Km values for S-adenosyl-L-methionine. The disruptant incorporated radioactivity from L-[methyl-14C]Met into phosphatidylcholine at a low but measurable rate and required choline for optimal growth. When choline was omitted from the culture medium, the phosphatidylcholine content of the cells significantly decreased, but was restored by the addition of N-monomethylethanolamine or choline. When the PEM2 locus was disrupted, the activities for the second and third methylations were totally lost, but that for the first methylation remained. This activity could be distinguished from those remaining in the pem1 disruptant by its different pH optimum and apparent Km for S-adenosyl-L-methionine. When incubated with [methyl-14C]Met, the pem2 disruptant accumulated the radioactivity in phosphatidylmonomethylethanolamine. This disruptant also required choline for optimal growth. In the absence of choline, it accumulated phosphatidylmonomethylethanolamine with a concomitant decrease in phosphatidylcholine and phosphatidylethanolamine. When both loci were disrupted, all phospholipid-methylating activities were lost and cells absolutely required choline for growth. The flux through the pathway became negligible. Thus, the PEM1-encoded methyltransferase was strictly specific to the first step while the PEM2-encoded methyltransferase exhibited a somewhat broader specificity with a preference for the second and third steps of the pathway. These two enzymes accounted for all the activities in the yeast phosphatidylethanolamine methylation pathway.  相似文献   

3.
4.
Phosphatidylcholine is the most abundant phospholipid in the membranes of Plasmodium falciparum, the agent of severe human malaria. The synthesis of this phospholipid occurs via two routes, the CDP-choline pathway, which uses host choline as a precursor, and the plant-like serine decarboxylase-phosphoethanolamine methyltransferase (SDPM) pathway, which uses host serine as a precursor. Although various components of these pathways have been identified, their cellular locations remain unknown. We have previously reported the identification and characterization of the phosphoethanolamine methyltransferase, Pfpmt, of P. falciparum and shown that it plays a critical role in the synthesis of phosphatidylcholine via the SDPM pathway. Here we provide the first evidence that the transmethylation step of the SDPM pathway occurs in the parasite Golgi apparatus. We show that the level of Pfpmt protein in the infected erythrocyte is regulated in a stage-specific fashion, with high levels detected during the trophozoite stage at the peak of parasite membrane biogenesis. Confocal microscopy revealed that Pfpmt is not cytoplasmic. Immunoelectron microscopy revealed that Pfpmt localizes to membrane structures that extend from the nuclear membrane but that it only partially co-localizes with the endoplasmic reticulum marker BiP. Using transgenic parasites expressing green fluorescent protein targeted to different cellular compartments, a complete co-localization was detected with Rab6, a marker of the Golgi apparatus. Together these studies provide the first evidence that the transmethylation step of the SDPM pathway of P. falciparum occurs in the Golgi apparatus and indicate an important role for this organelle in parasite membrane biogenesis.  相似文献   

5.
Biochemical studies in the human malaria parasite, Plasmodium falciparum, indicated that in addition to the pathway for synthesis of phosphatidylcholine from choline (CDP-choline pathway), the parasite synthesizes this major membrane phospholipid via an alternative pathway named the serine-decarboxylase-phosphoethanolamine-methyltransferase (SDPM) pathway using host serine and ethanolamine as precursors. However, the role the transmethylation of phosphatidylethanolamine plays in the biosynthesis of phosphatidylcholine and the importance of the SDPM pathway in the parasite's growth and survival remain unknown. Here, we provide genetic evidence that knock-out of the PfPMT gene encoding the phosphoethanolamine methyltransferase enzyme completely abrogates the biosynthesis of phosphatidylcholine via the SDPM pathway. Lipid analysis in knock-out parasites revealed that unlike in mammalian and yeast cells, methylation of phosphatidylethanolamine to phosphatidylcholine does not occur in P. falciparum, thus making the SDPM and CDP-choline pathways the only routes for phosphatidylcholine biosynthesis in this organism. Interestingly, loss of PfPMT resulted in significant defects in parasite growth, multiplication, and viability, suggesting that this gene plays an important role in the pathogenesis of intraerythrocytic Plasmodium parasites.  相似文献   

6.
We recently described a new route for the synthesis of phosphatidylethanolamine (PtdEtn) from exogenous lyso-PtdEtn, which we have termed the exogenous lysolipid metabolism (ELM) pathway. The ELM pathway for lyso-PtdEtn requires the action of plasma membrane P-type ATPases Dnf1p and Dnf2p and their requisite beta-subunit, Lem3p, for the active uptake of lyso-PtdEtn. In addition, the acyl-CoA-dependent acyltransferase, Ale1p, mediates the acylation of the imported lysolipid to form PtdEtn. We now report that these components of the lyso-PtdEtn ELM pathway are also active with lyso-1-acyl-2-hydroxyl-sn-glycero-3-phosphocholine (PtdCho) as a substrate. Lyso-PtdCho supports the growth of a choline auxotrophic pem1Delta pem2Delta strain. Uptake of radiolabeled lyso-PtdCho was impaired by the dnf2Delta and lem3Delta mutations. Introduction of a lem3Delta mutation into a pem1Delta pem2Delta background impaired the ability of the resulting strain to grow with lyso-PtdCho as the sole precursor of PtdCho. After import of lyso-PtdCho, the recently characterized lyso-PtdEtn acyltransferase, Ale1p, functioned as the sole lyso-PtdCho acyltransferase in yeast. A pem1Delta pem2Delta ale1Delta strain grew with lyso-PtdCho as a substrate but showed a profound reduction in PtdCho content when lyso-PtdCho was the only precursor of PtdCho. Ale1p acylates lyso-PtdCho with a preference for monounsaturated acyl-CoA species, and the specific LPCAT activity of Ale1p in yeast membranes is >50-fold higher than the basal rate of de novo aminoglycerophospholipid biosynthesis from phosphatidylserine synthase activity. In addition to lyso-PtdCho, lyso-PtdEtn, and lyso-phosphatidic acid, Ale1p was also active with lysophosphatidylserine, lysophosphatidylglycerol, and lysophosphatidylinositol as substrates. These results establish a new pathway for the net synthesis of PtdCho in yeast and provide new tools for the study of PtdCho synthesis, transport, and remodeling.  相似文献   

7.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

8.
9.
Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1. 82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The gene encoding ethanolamine kinase (EKI1) was identified from the Saccharomyces Genome Data Base (locus YDR147W) based on its homology to the Saccharomyces cerevisiae CKI1-encoded choline kinase, which also exhibits ethanolamine kinase activity. The EKI1 gene was isolated and used to construct eki1Delta and eki1Delta cki1Delta mutants. A multicopy plasmid containing the EKI1 gene directed the overexpression of ethanolamine kinase activity in wild-type, eki1Delta mutant, cki1Delta mutant, and eki1Delta cki1Delta double mutant cells. The heterologous expression of the S. cerevisiae EKI1 gene in Sf-9 insect cells resulted in a 165,500-fold overexpression of ethanolamine kinase activity relative to control insect cells. The EKI1 gene product also exhibited choline kinase activity. Biochemical analyses of the enzyme expressed in insect cells, in eki1Delta mutants, and in cki1Delta mutants indicated that ethanolamine was the preferred substrate. The eki1Delta mutant did not exhibit a growth phenotype. Biochemical analyses of eki1Delta, cki1Delta, and eki1Delta cki1Delta mutants showed that the EKI1 and CKI1 gene products encoded all of the ethanolamine kinase and choline kinase activities in S. cerevisiae. In vivo labeling experiments showed that the EKI1 and CKI1 gene products had overlapping functions with respect to phospholipid synthesis. Whereas the EKI1 gene product was primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway, the CKI1 gene product was primarily responsible for phosphatidylcholine synthesis via the CDP-choline pathway. Unlike cki1Delta mutants, eki1Delta mutants did not suppress the essential function of Sec14p.  相似文献   

10.
The effect of 2-hydroxyethylhydrazine on the phosphatidylethanolamine methylation pathway in yeast was studied. 2-Hydroxyethylhydrazine inhibited the growth of cells. The concentration required for 50% inhibition was 66 microM. The growth rate decreased by 2-hydroxyethylhydrazine was restored by the addition of a low concentration of choline. Incorporation of radioactivity from L-[3-14C]serine, L-[methyl-14C]methionine and S-adenosyl-L-[methyl-14C]methionine into phosphatidylcholine was markedly reduced by 2-hydroxyethylhydrazine. The restoration of growth by choline was not due to the reversal of the inhibition, but to the formation of phosphatidylcholine via the CDPcholine pathway. Thus, the site of action of 2-hydroxyethylhydrazine in vivo was the phosphatidylethanolamine methylation pathway. Experiments with methylation mutants indicated that all three steps of methylation were sensitive to 2-hydroxyethylhydrazine. 2-Hydroxyethylhydrazine was shown to inhibit the methyltransferase after it had become chemically or metabolically transformed in cells. 2-Hydroxyethylhydrazine-resistant mutants were obtained and were found to have a defect in choline transport activity. Genetic data indicated that the uptake of 2-hydroxyethylhydrazine into cells is mediated by the choline transport system.  相似文献   

11.
The PfPMT enzyme of Plasmodium falciparum, the agent of severe human malaria, is a member of a large family of known and predicted phosphoethanolamine methyltransferases (PMTs) recently identified in plants, worms, and protozoa. Functional studies in P. falciparum revealed that PfPMT plays a critical role in the synthesis of phosphatidylcholine via a plant-like pathway involving serine decarboxylation and phosphoethanolamine methylation. Despite their important biological functions, PMT structures have not yet been solved, and nothing is known about which amino acids in these enzymes are critical for catalysis and binding to S-adenosyl-methionine and phosphoethanolamine substrates. Here we have performed a mutational analysis of PfPMT focused on 24 residues within and outside the predicted catalytic motif. The ability of PfPMT to complement the choline auxotrophy of a yeast mutant defective in phospholipid methylation enabled us to characterize the activity of the PfPMT mutants. Mutations in residues Asp-61, Gly-83 and Asp-128 dramatically altered PfPMT activity and its complementation of the yeast mutant. Our analyses identify the importance of these residues in PfPMT activity and set the stage for advanced structural understanding of this class of enzymes.  相似文献   

12.
Mudd SH  Datko AH 《Plant physiology》1986,82(1):126-135
The pathway for synthesis of phosphatidylcholine, the dominant methyl-containing end product formed by Lemna paucicostata, has been investigated. Methyl groups originating in methionine are rapidly utilized by intact plants to methylate phosphoethanolamine successively to the mono-, di-, and tri-methyl (i.e. phosphocholine) phosphoethanolamine derivatives. With continued labeling, radioactivity initially builds up in these compounds, then passes on, accumulating chiefly in phosphatidylcholine (34% of the total radioactivity taken up by plants labeled to isotopic equilibrium with l-[(14)CH(3)]methionine), and in lesser amounts in soluble choline (6%). Radioactivity was detected in mono- and dimethyl derivatives of free ethanolamine or phosphatidylethanolamine only in trace amounts. Pulse-chase experiments with [(14)CH(3)]choline and [(3)H] ethanolamine confirmed that phosphoethanolamine is rapidly methylated and that phosphocholine is converted to phosphatidylcholine. Initial rates indicate that methylation of phosphoethanolamine predominates over methylation of either phosphatidylethanolamine or free ethanolamine at least 99:1. Although more studies are needed, it is suggested this pathway may well turn out to account for most phosphatidylcholine synthesis in higher plants. Phosphomethylethanolamine and phosphodimethylethanolamine are present in low quantities during steady-state growth (18% and 6%, respectively, of the amount of phosphocholine). Radioactivity was not detected in CDP-choline, probably due to the low steady-state concentration of this nucleotide.  相似文献   

13.
In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3 × HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pem1Δpem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pem1Δpem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations.  相似文献   

14.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

15.
Abstract: In most cell types the major pathway of sphingomyelin synthesis is the direct transfer of the phosphocholine head group from phosphatidylcholine to ceramide catalyzed by the enzyme l -acylsphingosine:phosphatidylcholine phosphocholinetransferase (SM synthase; EC 2.7.8.-). Although this pathway has been demonstrated in brain tissue, its quantitative importance has been questioned. An alternative biosynthetic pathway for sphingomyelin synthesis in brain tissue has been proposed, viz., the direct transfer of phosphoethanolamine from phosphatidylethanolamine to ceramide, followed by methylation of the ethanolamine moiety to a choline group. We have evaluated various possible biosynthetic pathways of sphingomyelin synthesis in rat spinal cord oligodendrocytes, the myelin-forming cells of the CNS, by labeling cells in culture with radiolabeled choline, ethanolamine, or serine. Our results indicate that, in oligodendrocytes, most of the phosphocholine for the biosynthesis of sphingomyelin is provided by phosphatidylcholine, which is predominantly derived from de novo synthesis. No evidence was found for the operation of the alternative pathway via ceramide-phosphoethanolamine. Furthermore, our results indicate that a small pool of phosphatidylcholine is provided by methylation of phosphatidylethanolamine, which in turn is formed preferentially by decarboxylation of phosphatidylserine.  相似文献   

16.
Phosphatidylcholine and phosphatidylethanolamine are the most abundant phospholipids in eukaryotic cells and thus have major roles in the formation and maintenance of vesicular membranes. In yeast, diacylglycerol accepts a phosphocholine moiety through a CPT1-derived cholinephosphotransferase activity to directly synthesize phosphatidylcholine. EPT1-derived activity can transfer either phosphocholine or phosphoethanolamine to diacylglcyerol in vitro, but is currently believed to primarily synthesize phosphatidylethanolamine in vivo. In this study we report that CPT1- and EPT1-derived cholinephosphotransferase activities can significantly overlap in vivo such that EPT1 can contribute to 60% of net phosphatidylcholine synthesis via the Kennedy pathway. Alterations in the level of diacylglycerol consumption through alterations in phosphatidylcholine synthesis directly correlated with the level of SEC14-dependent invertase secretion and affected cell viability. Administration of synthetic di8:0 diacylglycerol resulted in a partial rescue of cells from SEC14-mediated cell death. The addition of di8:0 diacylglycerol increased di8:0 diacylglycerol levels 20-40-fold over endogenous long-chain diacylglycerol levels. Di8:0 diacylglcyerol did not alter endogenous phospholipid metabolic pathways, nor was it converted to di8:0 phosphatidic acid.  相似文献   

17.
In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.  相似文献   

18.
The enzymatic synthesis of phosphatidylcholine from phosphatidylethanolamine via a transmethylation pathway has not been shown to occur in the small intestine and has been assumed to be absent from the entire gut. The existence of this pathway, however, has not been investigated in the large intestine. Utilizing a recently developed method for the isolation of brush-border membranes from rat colonocytes, the present studies were designed to determine whether phospholipid methylation activity was present in the large intestine. The results demonstrate that this pathway for synthesis of phosphatidylcholine exists in rat colonic plasma membranes and involves at least two distinct methyltransferases. The predominant product of the first enzyme (methyltransferase I) is phosphatidyl-N-monomethylethanolamine; phosphatidylcholine and phosphatidyl-N-monomethylethanolamine are the principal products of the second enzyme (methyltransferase II). Methyltransferase I has an apparent Km for S-adenosyl-L-methionine of 100.0 microM and a pH optimum of 8.0, while methyltransferase II has an apparent Km of 0.3 microM and a pH optimum of 6.0. Additional evidence to support the presence of two distinct enzymes includes the differential effects of ATP, Triton X-100, trypsin treatment, and temperature on their activities.  相似文献   

19.
We reported in a recent publication that hexadecylphosphocholine (HePC), a lysophospholipid analogue, reduces cell proliferation in HepG2 cells and at the same time inhibits the biosynthesis of phosphatidylcholine (PC) via CDP-choline by acting upon CTP:phosphocholine cytidylyltransferase (CT). We describe here the results of our study into the influence of HePC on other biosynthetic pathways of glycerolipids. HePC clearly decreased the incorporation of the exogenous precursor [1,2,3-3H]glycerol into PC and phosphatidylserine (PS) whilst increasing that of the neutral lipids diacylglycerol (DAG) and triacylglycerol (TAG). Interestingly, the uptake of L-[3-3H]serine into PS and other phospholipids remained unchanged by HePC and neither was the activity of either PS synthase or PS decarboxylase altered, demonstrating that the biosynthesis of PS is unaffected by HePC. We also analyzed the water-soluble intermediates and final product of the CDP-ethanolamine pathway and found that HePC caused an increase in the incorporation of [1,2-14C]ethanolamine into CDP-ethanolamine and phosphatidylethanolamine (PE) and a decrease in ethanolamine phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine cytidylyltransferase activity. Since PE can be methylated to give PC, we studied this process further and observed that HePC decreased the synthesis of PC from PE by inhibiting the PE N-methyltransferase activity. These results constitute the first experimental evidence that the inhibition of the synthesis of PC via CDP-choline by HePC is not counterbalanced by any increase in its formation via methylation. On the contrary, in the presence of HePC both pathways seem to contribute jointly to a decrease in the overall synthesis of PC in HepG2 cells.  相似文献   

20.
Metabolism of phosphatidylethanolamine in the frog retina   总被引:1,自引:0,他引:1  
The synthesis and the turnover of phosphatidylethanolamine in frog retinal rod outer segments and microsomes were studied by monitoring the incorporation of five radioactive precursors: 32PO4, 33PO4 [3H]glycerol, [3H]serine, and [3H]ethanolamine. 1. Labeled serine was actively incorporated into phosphatidylethanolamine. The kinetics of the labeling patterns in both microsomes and rod outer segments was consistent with formation via decarboxylation of phosphatidylserine. 2. Ethanolamine was found to be an ineffective precursor of phosphatidylethanolamine, suggesting that the major pathway for phosphatidylethanolamine synthesis in the retina is via the decarboxylation reaction. 3. An active methylation of phosphatidylethanolamine to phosphatidylcholine was observed in both retinal microsomes and rod outer segments. 4. The kinetics of labeling of phosphatidylethanolamine in the rod outer segments was different for the various isotopic precursors, and was found to depend on the relative turnover times of the precursor pools. Glycerol was the only precursor that gave a true pulse of radioactivity. 5. The specific activity of phosphatidylethanolamine derived from labeled glycerol declined exponentially, demonstrating that the labeled lipid was diffusely distributed throughout the rod outer segments. The half-life of phosphatidylethanolamine in the rod outer segments was determined to be 18 days. Comparison of this value to the turnover time of rod outer segment integral proteins revealed that rod outer segment lipid is renewed at a faster rate than protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号