首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycolithocholic acid and its sulfated derivative are major metabolites of the secondary bile acid lithocholic acid in man. Both compounds are known to induce cholestasis in experimental animals. We compared the effects of these endogenous hepatotoxins on bile production and biliary lipid composition in rats with chronic biliary drainage. The compounds were administered enterally at relatively low rates (5-50% of the rats' endogenous bile acid secretion in these experiments) to simulate enterohepatic circulation. Both compounds were substantially secreted into bile (more than 90% of dose); sulfated glycolithocholic acid unchanged and glycolithocholic acid after hepatic hydroxylation predominantly in the form of glyco-beta-muricholic acid (cf. Kuipers et al. (1986) Am. J. Physiol. 251, G189-G194). Neither glycolithocholic acid nor its sulfated derivative affected the biliary excretion of endogenous bile acids or bile flow in these experiments. In spite of this, phospholipid and cholesterol secretion were significantly reduced by sulfated glycolithocholic acid but were not altered by glycolithocholic acid. Phospholipid and cholesterol secretion rapidly decreased to 25 and 50% of their initial values, respectively, at biliary output rates of sulfated glycolithocholic acid up to 2 mumol/h, and did not further decrease when this output was increased to 6 mumol/h. Small unilamellar liposomes consisting of cholesterol, [Me-14C]choline-labeled phosphatidylcholine, phosphatidylserine and [3H]cholesteryl oleate in a 5:4:1:0.1 molar ratio were employed to label intrahepatic lipid pools. Administration of sulfated glycolithocholic acid slightly reduced bile acid synthesis from [3H]cholesteryl oleate, but significantly reduced the biliary secretion of [14C]phospholipid. Glycolithocholic acid did not affect the hepatic processing of liposomal lipids. It is concluded that sulfated glycolithocholic acid at low doses causes the uncoupling of biliary lipid secretion from that of bile acids, which might represent in initiating event in sulfated glycolithocholic acid hepatotoxicity.  相似文献   

2.
It has been shown that lithocholic glucuronide is more cholestatic than lithocholic acid (LCA), as well as its taurine and glycine conjugates. Furthermore, LCA hydroxylation is thought to be a major detoxifying mechanism. Therefore, the role of LCA glucuronidation and hydroxylation was investigated during the development of LCA-induced cholestasis and recovery from it. Male rats received a bolus intravenous injection of [14C]LCA (12 mumol/100 g body weight) and bile samples were collected every 30 min for 5 h. Bile flow (BF) was reduced immediately after LCA injection, dropping to 40% of basal BF at 60 min. It then started to increase, reaching normal bile flow values at 3.5 h. Morphologically, canalicular lesions were dominant at 60 min and virtually absent at 2 h. At 60 min (maximal cholestasis), 30% of the LCA injected was secreted in bile, 20% was found in plasma while the other 50% was recovered in the liver and distributed mainly in plasma membranes, microsomes and cytosol. At the end of the experiment (normal BF), 20% of the LCA injected was still in the liver but was present mainly in the cytosol. In bile, within 30 min after injection, 46% of the LCA secreted was lithocholic glucuronide, 24% was conjugated with taurine and glycine, and 21% was in the form of hydroxylated bile acids. During the recovery period, lithocholic glucuronide secretion decreased to 18-25%. Taurine and glycine conjugate secretion increased to a maximum of 43% at 60 min, after which it was reduced to 21-28%. In contrast, hydroxylated metabolites were elevated during the recovery periods, reaching a maximum (45%) at 120 min and remaining constant thereafter. These results suggest that: (i) LCA binding to plasma membranes and microsomes appeared to correlate with the development of cholestasis; (ii) LCA glucuronidation may initiate and/or contribute to LCA-induced cholestasis; and (iii) hydroxylation predominates during recovery from cholestasis.  相似文献   

3.
Endocytic internalization of the multidrug resistance-associated protein 2 (Mrp2) was previously suggested to be involved in estradiol-17beta-D-glucuronide (E217G)-induced cholestasis. Here we evaluated in the rat whether a similar phenomenon occurs with the bile salt export pump (Bsep) and the ability of DBcAMP to prevent it. E217G (15 micromol/kg i.v.) impaired bile salt (BS) output and induced Bsep internalization, as assessed by confocal microscopy and Western blotting. Neither cholestasis nor Bsep internalization occurred in TR- rats lacking Mrp2. DBcAMP (20 micromol/kg i.v.) partially prevented the decrease in bile flow and BS output and substantially prevented E217G-induced Bsep internalization. In hepatocyte couplets, E217G (50 microM) diminished canalicular accumulation of a fluorescent BS and decreased Bsep-associated fluorescence in the canalicular membrane; DBcAMP (10 microM) fully prevented both effects. In conclusion, our results suggest that changes in Bsep localization are involved in E217G-induced impairment of bile flow and BS transport and that DBcAMP prevents this effect by stimulating insertion of canalicular transporter-containing vesicles. Mrp2 is required for E217G to induce its harmful effect.  相似文献   

4.
In the present study HD-03, a herbal formulation was investigated for its anti-cholestatic activity in TAA-induced cholestasis in anaesthetized guinea pigs. Administration of TAA at a dose of 100 mg/kg body wt significantly reduced the bile flow, bile acid and bile salt excretion. Pretreatment with HD-03 at a dose of 750 mg/kg body wt per orally for 15 days in guinea pigs significantly prevented thioacetamide-induced changes in bile flow, bile acids and bile salts excretion. Thus, HD-03 can serve as a potent choleretic and anti-cholestatic agent.  相似文献   

5.
Feedback regulation of bile acid biosynthesis in the rat   总被引:11,自引:0,他引:11  
The hepatic biosynthesis of bile salts in the rat has been shown to be controlled homeostatically by the quantity of bile salt returning to the liver via the portal circulation. The feedback mechanism was demonstrated in two kinds of experiments. In the first, rats with bile fistulas were infused intraduodenally with sodium taurocholate 12 hr after surgery. If the rate of infusion was greater than 10 mg per 100 g rat per hr, the increase in bile acid output normally observed in bile fistula rats was prevented. In the second type of experiment, the rats were infused with taurocholate 48-72 hr after biliary diversion, when bile acid output had reached a maximal value. Provided the rate of infusion exceeded 10 mg per 100 g rat per hr, bile acid secretion returned to the low levels observed in intact rats. Previous attempts to demonstrate the feedback control have been unsuccessful because too little bile salt was infused. The taurocholate pool of the experimental animals was measured as approximately 15 mg per 100 g rat; it was calculated from this and the above results that this pool circulated 10-13 times daily.  相似文献   

6.
The flow rate and ionic composition of bile during spontaneous secretion were measured in anaesthetized penguins in which the enterohepatic circulation had been interrupted and with i.v. injection of saline to replace secretory loss. During the first two hours the rate of flow increased, and then remained relatively constant for a further two and a half hours. During this time the concentration of bile salt fell, but the concentrations of other ions showed small fluctuations only. Sodium taurocholate increased the rate of bile flow and the excretion of ions, except that of bicarbonate. Sodium taurolithocholate initially produced cholestasis but later apparently increased bile flow and had an overall choleretic effect. It is suggested that the active excretion of bicarbonate ions by the bile ducts is the predominant regulator of bile secretion in the penguin.  相似文献   

7.
The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in hepatobiliary cholesterol excretion in mice during (maximal) stimulation of this process. Despite similar bile salt (BS) excretion rates, basal total sterol and phospholipid (PL) output rates were reduced by 82% and 35%, respectively, in chow-fed Abcg5(-/-) mice compared with wild-type mice. When mice were infused with the hydrophilic BS tauroursodeoxycholate, similar relative increases in bile flow, BS output, PL output, and total sterol output were observed in wild-type, Abcg5(+/-), and Abcg5(-/-) mice. Maximal cholesterol and PL output rates in Abcg5(-/-) mice were only 15% and 69%, respectively, of wild-type values. An infusion of increasing amounts of the hydrophobic BS taurodeoxycholate increased cholesterol excretion by 3.0- and 2.4-fold in wild-type and Abcg5(-/-) mice but rapidly induced cholestasis in Abcg5(-/-) mice. Treatment with the liver X receptor (LXR) agonist T0901317 increased the maximal sterol excretion capacity in wild-type mice (fourfold), concomitant with the induction of Abcg5/Abcg8 expression, but not in Abcg5(-/-) mice. In a separate study, mice were fed chow containing 1% (wt/wt) cholesterol. As expected, hepatic expression of Abcg5 and Abcg8 was strongly induced (fivefold and fourfold) in wild-type but not LXR-alpha-deficient (Lxra(-/-)) mice. Surprisingly, hepatobiliary cholesterol excretion was increased to the same extent, i.e., 2.2-fold in wild-type mice and 2.0-fold in Lxra(-/-) mice, upon cholesterol feeding. Our data confirm that Abcg5, as part of the Abcg5/Abcg8 heterodimer, strongly controls hepatobiliary cholesterol secretion in mice. However, our data demonstrate that Abcg5/Abcg8 heterodimer-independent, inducible routes exist that can significantly contribute to total hepatobiliary cholesterol output.  相似文献   

8.
The aim of the present study was to determine whether bile acid feeding to rats can reverse ethinyl estradiol-induced cholestasis. Animals received ethinyl estradiol (2 mg/kg/day) for 6 days or were coinfused with estrogen plus various bile acids (60 mg/kg/day). Cholestasis could be significantly prevented by tauroursodeoxycholic acid, was partly corrected by ursodeoxycholic acid, and was unchanged by chenodeoxycholic acid. Total bile salt secretion was increased in every group. The secretion of the major primary bile acids (cholic acid and beta-muricholic acid) was restored to a large extent in rats supplemented with tauroursodeoxycholate but not in chenodeoxycholate-fed rats. In the former group, the canalicular transport of taurocholate and the bile salt pool size were identical with those of control rats. The hydrophilic-hydrophobic balance of the administered bile salt species appears to be an essential factor in the restoration of bile secretion, the more hydrophilic bile salt having the more hepatoprotective effect.  相似文献   

9.
To define the role of inorganic electrolyte secretion in hepatic bile formation, the effects of secretin, glucagon, and differently structured bile acids on bile flow and composition were studied in the dog, guinea pig, and rat. In the dog and guinea pig, secretin (2.5-10 clinical units X kg-1 X 30 min-1) increased bile flow and bicarbonate concentration in bile, a finding consistent with the hypothesis that the hormone stimulates a bicarbonate-dependent secretion possibly at the level of the bile ductule-duct. In the rat, secretin (5-15 CU X kg-1 X 30 min-1) failed to increase bile secretion. Glucagon (1.25-300 micrograms X kg-1 X 30 min-1) increased bile flow in all the three species, and produced no changes in biliary bicarbonate concentrations in the dog and rat. In the guinea pig, however, glucagon choleresis was associated with an increase in bicarbonate concentration in bile, similar to that observed with secretin. The choleretic activities of various bile acids (taurocholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, and ursodeoxycholic acid, infused at 30-360 mumol X kg-1 X 30 min-1) were similar in the rat (6.9-7.2 microL/mumol), but different in the guinea pig (11-31 microL/mumol). In the latter species, the more hydrophobic the bile acid, the greater was its choleretic activity. In all instances, bile acid choleresis was associated with a decline in the biliary concentrations of chloride, but with no major change in bicarbonate levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The aim of this work was to study the effect of cyclosporine on the somatotropic axis. Accordingly, growth hormone (GH) secretion, circulating insulin-like growth factor I (IGF-I) and IGF binding proteins (IGFBPs) in response to cyclosporin A (CsA) treatment were examined in adult male Wistar rats. Cyclosporine administration (5, 10 or 20 mg/Kg daily) over 8 days did not modify the body weight, but it did decrease serum concentration of corticosterone and increased serum IGF-I and GH levels. Rats treated with 5 and 10 mg/Kg of cyclosporine had similar levels of serum IGFBPs to control rats, but there was an increase in circulating IGFBP-3 and IGFPB-1,2 in the group treated with 20 mg/Kg of CsA. The increase in circulating GH correlates with a decrease in pituitary GH content in CsA treated rats, with no modification in hypothalamic somatostatin content, suggesting an increase in pituitary GH release. In order to test this hypothesis, anterior pituitary cell cultures were exposed to different CsA concentrations during a 4 h incubation period. Cyclosporine increased GH secretion in cultured pituitary cells (p<0.05). These data suggest that cyclosporine increases circulating IGF-I and GH by stimulating pituitary GH release.  相似文献   

11.
Biliary secretory pressure represents the force generated to deliver bile through the biliary system. Bile acid-induced toxicity may decrease canalicular bile formation and (or) induce back diffusion causing cholestasis. To determine if biliary secretory pressure is a sensitive indicator of bile toxicity, taurocholate was compared with a less cytotoxic bile acid, tauroursodeoxycholate. In fasted male Sprague-Dawley rats, the common bile duct was cannulated and the endogenous bile salt pool was removed by enteroclysis. Taurocholate (n = 35) or tauroursodeoxycholate (n = 35) in saline was infused for 1 h. Maximal biliary secretory pressure was then measured by attaching the biliary cannula to a column monometer and recording the maximum height to which bile rose. With taurocholate administration, bile flow and bile salt secretion linearly rose to a maximum infusion of 0.5 mumol/(min.g liver), above which hemolysis and death occurred. In contrast, tauroursodeoxycholate could be infused at higher rates with bile salt secretion plateauing at 1.25 mumol/(min.g liver] Both had similar choleretic potencies. Mean biliary secretory pressure at low (less than 0.15 mumol/(min.g liver] infusions was lower with taurocholate (22.5 cm bile) than tauroursodeoxycholate (25.2 cm). Further, increasing the taurocholate infusion decreased the biliary secretory pressure; yet for taurousodeoxycholate, pressure remained unchanged even at higher infusions. Thus, taurocholate but not tauroursodeoxycholate decreases biliary secretory pressure at high infusion rates, likely a reflection of its toxicity to the hepatobiliary epithelium.  相似文献   

12.
A circadian stage-dependent anti-tumor effect of cyclosporine was tested on 268 female DBA mice, 9-10 weeks of age. The mice were kept in 6 different environmental chambers on regimens of 12h of light alternating with 12h of darkness, staggered by 4h: they were inoculated intraperitoneally with 2 X 10(5) L1210 cells at one of 6 different circadian stages. At the same circadian stage, starting 48h after inoculation, for 4 days, each mouse received the vehicle, a fixed dose of cyclosporine (15 mg/kg b.w.), a varying dose of cyclosporine 5, 10, 20 and 25 mg/kg b.w.) or no treatment. Cyclosporine prolonged survival time in a circadian stage dependent fashion (p less than 0.01), as shown by an analysis of variance and by cosinor analysis (mesor = 8.45h; amplitude = 5.45h; acrophase = 12 HALO). Cyclosporine thus acts, in a feed-sideward, as a chronomodulator of the interaction between the tumor and its host.  相似文献   

13.
The phosphatidylethanolamine N-methyltransferase (PEMT) pathway of phosphatidylcholine (PC) biosynthesis is not essential for the highly specific acyl chain composition of biliary PC. We evaluated whether the PEMT pathway is quantitatively important for biliary PC secretion in mice under various experimental conditions. Biliary bile salt and PC secretion were determined in mice in which the gene encoding PEMT was inactivated (Pemt(-/-)) and in wild-type mice under basal conditions, during acute metabolic stress (intravenous infusion of the bile salt tauroursodeoxycholate), and during chronic metabolic stress (feeding a taurocholate-containing diet for 1 week). The activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme of PC biosynthesis via the CDP-choline pathway, and the abundance of multi-drug-resistant protein 2 (Mdr2; encoded by the Abcb4 gene), the canalicular membrane flippase essential for biliary PC secretion, were determined. Under basal conditions, Pemt(-/-) and wild-type mice exhibited similar biliary secretion rates of bile salt and PC ( approximately 145 and approximately 28 nmol/min/100 g body weight, respectively). During acute or chronic bile salt administration, the biliary PC secretion rates increased similarly in Pemt(-/-) and control mice. Mdr2 mRNA and protein abundance did not differ between Pemt(-/-) and wild-type mice. The cytidylyltransferase activity in hepatic lysates was increased by 20% in Pemt(-/-) mice fed the basal (bile salt-free) diet (P < 0.05). We conclude that the biosynthesis of PC via the PEMT pathway is not quantitatively essential for biliary PC secretion under acute or chronic bile salt administration.  相似文献   

14.
15.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

16.
Twelve patients with inactive ulcer disease were administered placebo and ranitidine via bolus and continuous intravenous infusions, at doses ranging from 50 every 8 h, to 12.5 mg/h for 24 h. Gastric acid was collected for 20 min each h for 24 h, and ranitidine serum concentrations were measured ± every 2 h, during each of the six study periods. Cosinor analysis of gastric acid secretion during placebo treatment revealed a significant circadian rhythm in all subjects. Mesor acid output ranged from 1.7 to 11.6 mmol/h (mean 5.6 ± 2.8 mmol/h) and the amplitude ranged from 0.7 to 6.5 mmol/h (mean 2.8 ±1.6 mmol/h). Peak acid output (acrophase) occurred at 10 p.m. ± 3 h. A pharmacodynamic model, relating ranitidine serum concentration to hourly acid secretion, was derived, which incorporated the circadian change in basal acid output. Data for this fractional response model included basal acid secretion-as determined by time of day, measured acid secretion, and associated serum ranitidine concentration. The 50% inhibitory concentration (IC50) for ranitidine ranged from 10-75 ng/ml, with a mean of 44 ng/ml. The variation in IC50 and in basal acid secretion combined to produce a wide variation in the pharmacodynamic response to ranitidine. The model-predicted serum concentrations, required to maintain acid secretion at 0.1 mmol/h, ranged from 250 to 1550 ng/ml, at the time of peak evening acid secretion. Despite a constant degree of acid inhibition by ranitidine during the day, higher serum concentrations are required during times of peak acid output to maintain adequate suppression of hydrogen ion secretion.  相似文献   

17.
The biological effects of bile acids depend largely upon their molecular structure. When bile acid uptake exceeds the maximal biliary secretory rate (SRm) cholestasis occurs. In order to characterize the influence of bile acid structure on its cholestatic potency we systematically studied SRm, maximal bile flow, maximal and cumulative phospholipid and cholesterol secretion with different taurine-conjugated tri-, di- and keto bile acids (Table I) in the isolated perfused rat liver. Bile acids with a high critical micellar concentration (CMC) promoted the greatest bile flow; a positive non-linear correlation between CMC and maximal bile flow was found. 3 alpha-Hydroxylated bile acids with a hydroxyl group in 6 alpha and/or 7 beta position and lacking a 12 alpha hydroxy group had a high SRm. SRm was not related to CMC or maximal bile flow, respectively. Phospholipids and cholesterol were secreted in a nearly fixed ratio of 12:1; a strong linear relationship could be observed. Cumulative phospholipid secretion over 48 min was significantly lower for non and poor micelle forming bile acids (TDHC and TUC) than for those with comparatively low CMC values (TUDC, TC, THC, THDC, TCDC) (70-140 vs. 210-450 nmol/g liver). At SRm all bile acids with good micelle forming properties showed a similar cumulative biliary lipid output. However, when biliary lipid output was related to 1 mumol bile acid secreted bile acids with a low SRm induced the highest lipid secretion (TCDC, TC). These data (1) demonstrate that a 6 alpha and/or a 7 beta hydroxy group on the steroid nucleus reduce cholestatic potency if the 12 alpha hydroxy group is absent, (2) suggest that in the case of micelle forming bile acids the total amount of phospholipids secreted in bile (depletion of cellular phospholipids) is associated with the occurrence of cholestasis whereby bile acids with a low SRm deplete the cellular phospholipid content at much lower bile acid concentrations than those with a higher SRm and (3) imply that bile acids with non and poor micelle forming properties (TDHC, TUC) presumably do not cause cholestasis (solely) by depletion of cellular phospholipids.  相似文献   

18.
The biliary secretion of protein in response to bile acids and other agents known to increase bile flow was examined in a chronic bile fistula dog model. Infusion of 25, 50, or 75 mumole/kg/hr sodium taurocholate after 3 hr of bile fistulization increased biliary protein output significantly by 52, 86, and 108% respectively compared to preinfusion values. A proportionate increase in biliary albumin output during taurocholate choleresis was demonstrated. Protein outputs during bile fistulization without taurocholate replacement were unchanged. The non-micelle-forming bile acid dehydrocholate markedly increased bile flow but did not change protein output. Similarly, the hormonal choleretics glucagon and secretin caused significant decreases in biliary protein concentration but no change in protein output. These data indicate a correlation between biliary protein secretion and bile acid-dependent bile flow. It is likely that regulation of certain proteins is dependent on the micelle-forming properties of bile acids.  相似文献   

19.
Our previous investigations have shown that lithocholic acid (LCA)-induced cholestasis is associated with an increased synthesis of microsomal cholesterol which is transported with LCA and incorporated in the bile canalicular membrane. As the significance of these changes remains unknown the effect of interference with microsomal protein synthesis and/or with the cellular transport of cholesterol was studied. Male Wistar rats were injected i.p. with cycloheximide at the dose of 15 micrograms/100 g BW 3 times over a 24-hour period. After cannulating the common bile duct and collecting bile for one hour, the animals were either injected i.v. with 12 mumoles C14-LCA/100 g BW or with a 7.5% albumin solution and bile was collected for another hour. LCA injection in untreated animals reduced bile flow by more than 90% of control values. In contrast, bile flow in the group treated with cycloheximide and LCA was normal and did not differ from that of animals given cycloheximide alone. Bile salt secretion rate was increased in the cycloheximide-LCA group over the control groups. This was mainly due to the secretion of more than 80% of the injected LCA and was confirmed by the distribution of the radioactivity. By electron microscopy, the liver in the cycloheximide-LCA group did not show any of the well defined changes associated with LCA-induced cholestasis. These data suggest that microsomes play an important role in the pathogenesis of LCA cholestasis and that inhibition of microsomal protein synthesis can prevent its development.  相似文献   

20.
目的:研究硫酸软骨素时慢性酒精中毒氧化损伤的保护作用.方法:60只Wistar大鼠随机分成六个组:空白组给予蒸馏水,酒精模型组给予50%的酒精8 ml·kg-1·d-1灌胃,纳洛酮组在给予酒精三十分钟后腹腔注射纳洛酮0.08mgkg-1·d-1,硫酸软骨素低、中、高剂量组在酒精模型组的基础上分别给予硫酸软骨素50,100和150mg·kg-1·d-1.两周后酒精的剂量增加到12mg·kg-1d-1.在第八周末,分离大鼠脑组织,观察大鼠神经细胞.用生物方法测定大鼠脑组织中GSH-PX、SOD、MDA以及Ache的活性.结果:模型组大鼠大脑皮质和海马区神经细胞的数量明显减少并且排列紊乱;和酒精模型组相比较,硫酸软骨素中剂量组大脑皮质和海马区神经细胞排列较整齐,酒精+Chondroitin组脑组织中MDA的含量和Ache降低(P<0.01),GSH-PX的含量和SOD的活力均明显增加(P<0.01).结论:硫酸软骨素时慢性酒精中毒氧化损伤具有保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号