首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The papovavirus JC virus (JCV) is highly oncogenic in experimental animals but, unlike simian virus 40 (SV40), is severely restricted in its ability to transform cells in culture. We exploited the close genetic relatedness of these two viruses to delimit region(s) of the T protein which can restrict transforming activity. Novel chimeric genomes were produced by exchanging various segments of the JCV and SV40 T-protein-coding regions. These DNA constructs specified early proteins with in-frame substitutions of analogous amino acid sequences. A second set of genomes was prepared which, in addition to chimeric early proteins, contained substituted regulatory regions. The transformation efficiencies of these chimeric genomes were intermediate between those of SV40 and JCV, with the source of T protein exerting a greater effect than that of the regulatory region. The ability of certain constructs to induce efficient transformation required the presence of an SV40 regulatory region or specific sequences within the SV40 early coding region. Cloned cell lines prepared from representative transformants were characterized; the ability to form colonies in soft agarose was investigated, and the presence of viral T and cellular p53 proteins was determined. The various T proteins differed in amount, stability, and the ability to form stable complexes with p53.  相似文献   

5.
Simian virus 40 (SV40) DNAs in brain tissue and peripheral blood mononuclear cells (PBMCs) of eight simian immunodeficiency virus-infected rhesus monkeys with SV40 brain disease were analyzed. We report the detection, cloning, and identification of five new SV40 strains following a quadruple testing-verification strategy. SV40 genomes with archetypal regulatory regions (containing a duplication within the G/C-rich regulatory region segment and a single 72-bp enhancer element) were recovered from seven animal brains, two tissues of which also contained viral genomes with nonarchetypal regulatory regions (containing a duplication within the G/C-rich regulatory region segment as well as a variable duplication within the enhancer region). In contrast, PBMC DNAs from five of six animals had viral genomes with both regulatory region types. It appeared, based on T-antigen variable-region sequences, that nonarchetypal virus variants arose de novo within each animal. The eighth animal exclusively yielded a new type of SV40 strain (SV40-K661), containing a protoarchetypal regulatory region (lacking a duplication within the G/C-rich segment of the regulatory region and containing one 72-bp element in the enhancer region), from both brain tissue and PBMCs. The presence of SV40 in PBMCs suggests that hematogenous spread of viral infection may occur. An archetypal version of a virus similar to SV40 reference strain 776 (a kidney isolate) was recovered from one brain, substantiating the idea that SV40 is neurotropic as well as kidney-tropic. Indirect evidence suggests that maternal-infant transmission of SV40 may have occurred in one animal. These findings provide new insights for human polyomavirus disease.  相似文献   

6.
7.
8.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

9.
Location of nucleosomes in simian virus 40 chromatin   总被引:5,自引:0,他引:5  
  相似文献   

10.
11.
12.
13.
14.
Most of the simian virus 40 (SV40) genome is conserved among isolates, but the noncoding regulatory region and the genomic region encoding the large T-antigen C terminus (T-ag-C) may exhibit considerable variation. We demonstrate here that SV40 isolates differ in their oncogenic potentials in Syrian golden hamsters. Experimental animals were inoculated intraperitoneally with 107 PFU of parental or recombinant SV40 viruses and were observed for 12 months to identify genetic determinants of oncogenicity. The viral regulatory region was found to exert a statistically significant influence on tumor incidence, whereas the T-ag-C played a minor role. Viruses with a single enhancer (1E) were more oncogenic than those with a two-enhancer (2E) structure. Rearrangements in the 1E viral regulatory region were detected in 4 of 60 (6.7%) tumors. Viral loads in tumors varied, with a median of 5.4 SV40 genome copies per cell. Infectious SV40 was rescued from 15 of 37 (40%) cell lines established from tumors. Most hamsters with tumors and many without tumors produced antibodies to T antigen. All viruses displayed similar transforming frequencies in vitro, suggesting that differences in oncogenic potential in vivo were due to host responses to viral infection. This study shows that SV40 strains differ in their biological properties, suggests that SV40 replicates to some level in hamsters, and indicates that the outcome of an SV40 infection may depend on the viral strain present.  相似文献   

15.
16.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

17.
18.
Negative regulation of viral enhancers in undifferentiated embryonic stem cells   总被引:127,自引:0,他引:127  
C M Gorman  P W Rigby  D P Lane 《Cell》1985,42(2):519-526
  相似文献   

19.
20.
Z Q Pan  H Ge  X Y Fu  J L Manley    C Prives 《Nucleic acids research》1989,17(16):6553-6568
We have investigated the roles of U1 and U2 snRNP particles in SV40 pre-mRNA splicing by oligonucleotide-targeted degradation of U1 or U2 snRNAs in Xenopus laevis oocytes. Microinjection of oligonucleotides complementary to regions of U1 or U2 RNAs either in the presence or absence of SV40 DNA resulted in specific cleavage of the corresponding snRNA. Unexpectedly, degradation of U1 or U2 snRNA was far more extensive when the oligonucleotide was injected without, or prior to, introduction of viral DNA. In either co-injected or pre-injected oocytes, these oligonucleotides caused a dramatic reduction in the accumulation of spliced SV40 mRNA expressed from the viral late region, and a commensurate increase in unspliced late RNA. When pre-injected, two different U2 specific oligonucleotides also inhibited the formation of both large and small tumor antigen spliced early mRNAs. However, even when, by pre-injection of a U1 5' end-specific oligonucleotide, greater than 95% degradation of the U1 snRNA 5' ends occurred in oocytes, no reduction in early pre-mRNA splicing was observed. In contrast, the same U1 5' end oligonucleotide, when added to HeLa splicing extracts, substantially inhibited the splicing of SV40 early pre-mRNA, indicating that U1 mRNP is not totally dispensable for early splicing. These findings confirm and extend our earlier observations which suggested that different pre-mRNAs vary in their requirements for snRNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号