首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme oxygenase (HO) catalyses the degradation of heme to biliverdin, carbon monoxide (CO) and ferrous iron via three successive monooxygenase reactions, using electrons provided by NADPH-cytochrome P450 reductase (CPR) and oxygen molecules. For cleavage of the oxaporphyrin ring of ferrous α-verdoheme, an intermediate in the HO reaction, involvement of a verdoheme π-neutral radical has been proposed. To explore this hypothetical mechanism, we performed electrochemical reduction of ferrous α-verdoheme-rat HO-1 complex under anaerobic conditions. Upon binding of CO, an O2 surrogate, the midpoint potential for one-electron reduction of the oxaporphyrin ring of ferrous α-verdoheme was increased from −0.465 to −0.392 V vs the normal hydrogen electrode. Because the latter potential is close to that of the semiquinone/reduced redox couple of FAD in CPR, the one-electron reduction of the oxaporphyrin ring of CO-bound verdoheme complexed with HO-1 is considered to be a thermodynamically likely process. Indeed the one-electron reduced species, [FeII(verdoheme•)], was observed spectroscopically in the presence of CO in both NADPH/wild-type and FMN-depleted CPR systems under anaerobic conditions. Under physiological conditions, therefore, it is possible that O2 initially binds to the ferrous iron of α-verdoheme in its complex with HO-1 and an electron is subsequently transferred from CPR, probably via FAD, to the oxaporphyrin ring.  相似文献   

2.
O2-dependent reactions of the ferric and ferrous forms of alpha-hydroxyheme complexed with water-soluble rat heme oxygenase-1 were examined by rapid-scan stopped-flow measurements. Ferric alpha-hydroxyheme reacted with O2 to form ferric verdoheme with an O2-dependent rate constant of 4x10(5) M(-1) s(-1) at pH 7.4 and 9.0. A decrease of the rate constant to 2.8x10(5) M(-1) s(-1) at pH 6.5 indicates that the reaction proceeds by direct attack of O2 on the pi-neutral radical form of alpha-hydroxyheme, which is generated by deprotonation of the alpha-hydroxy group. The reaction of ferrous alpha-hydroxyheme with O2 yielded ferrous verdoheme in a biphasic fashion involving a new intermediate having absorption maxima at 415 and 815 nm. The rate constants for this two-step reaction were 68 and 145 s(-1). These results show that conversion of alpha-hydroxyheme to verdoheme is much faster than the reduction of coordinated iron (<1 s(-1)) under physiological conditions [Y. Liu, P.R. Ortiz de Montellano, Reaction intermediates and single turnover rate constants for the oxidation of heme by human heme oxygenase-1, J. Biol. Chem. 275 (2000) 5297-5307], suggesting that, in vivo, the conversion of ferric alpha-hydroxyheme to ferric verdoheme precedes the reduction of ferric alpha-hydroxyheme.  相似文献   

3.
Electrons utilized in the heme oxygenase (HO) reaction are provided by NADPH-cytochrome P450 reductase (CPR). To investigate the electron transfer pathway from CPR to HO, we examined the reactions of heme and verdoheme, the second intermediate in the heme degradation, complexed with rat HO-1 (rHO-1) using a rat FMN-depleted CPR; the FMN-depleted CPR was prepared by dialyzing the CPR mutant, Y140A/Y178A, against 2 m KBr. Degradation of heme in complex with rHO-1 did not occur with FMN-depleted CPR, notwithstanding that the FMN-depleted CPR was able to associate with the heme-rHO-1 complex with a binding affinity comparable with that of the wild-type CPR. Thus, the first electron to reduce the ferric iron of heme complexed with rHO-1 must be transferred from FMN. In contrast, verdoheme was converted to the ferric biliverdin-iron chelate with FMN-depleted CPR, and this conversion was inhibited by ferricyanide, indicating that electrons are certainly required for conversion of verdoheme to a ferric biliverdin-iron chelate and that they can be supplied from the FMN-depleted CPR through a pathway not involving FMN, probably via FAD. This conclusion was supported by the observation that verdoheme dimethyl esters were accumulated in the reaction of the ferriprotoporphyrin IX dimethyl ester-rHO-1 complex with the wild-type CPR. Ferric biliverdin-iron chelate, generated with the FMN-depleted CPR, was converted to biliverdin by the addition of the wild-type CPR or desferrioxamine. Thus, the final electron for reducing ferric biliverdin-iron chelate to release ferrous iron and biliverdin is apparently provided by the FMN of CPR.  相似文献   

4.
Heme oxygenase (HO) catalyzes physiological heme degradation using O(2) and reducing equivalents to produce biliverdin, iron, and CO. Notably, the HO reaction proceeds without product inhibition by CO, which is generated in the conversion reaction of alpha-hydroxyheme to verdoheme, although CO is known to be a potent inhibitor of HO and other heme proteins. In order to probe how endogenous CO is released from the reaction site, we collected X-ray diffraction data from a crystal of the CO-bound form of the ferrous heme-HO complex in the dark and under illumination by a red laser at approximately 35 K. The difference Fourier map indicates that the CO ligand is partially photodissociated from the heme and that the photolyzed CO is trapped in a hydrophobic cavity adjacent to the heme pocket. This hydrophobic cavity was occupied also by xenon, which is similar to CO in terms of size and properties. Taking account of the affinity of CO for the ferrous verdoheme-HO complex being much weaker than that for the ferrous heme complex, the CO derived from alpha-hydroxyheme would be trapped preferentially in the hydrophobic cavity but not coordinated to the iron of verdoheme. This structural device would ensure the smooth progression of the subsequent reaction, from verdoheme to biliverdin, which requires O(2) binding to verdoheme.  相似文献   

5.
6.
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed.  相似文献   

7.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

8.
Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, α-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.  相似文献   

9.
Whether or not reducing equivalents are indispensable for the conversion of ferric alpha-hydroxyheme bound to heme oxygenase-1 to verdoheme remains controversial (Matera, K. M., Takahashi, S., Fujii, H., Zhou, H., Ishikawa, K., Yoshimura, T., Rousseau, D. L., Yoshida, T., and Ikeda-Saito, M. (1996) J. Biol. Chem. 271, 6618-6624; Liu, Y., Mo?nne-Loccoz, P., Loehr, T. M., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 6906-6917). To resolve this controversy, we have prepared a ferric alpha-hydroxyheme-heme oxygenase-1 complex and titrated the complex with O2 under strictly anaerobic conditions. The formation of verdoheme was monitored by optical and electron spin resonance spectroscopies. Electron spin resonance spectra of the complex showed that alpha-hydroxyheme exists as a mixture of resonance structures composed of the iron(III) porphyrin and the iron(II) porphyrin pi neutral radical. Upon addition of CO the latter species becomes dominant. The results obtained from these titration experiments indicate that alpha-hydroxyheme can be converted to verdoheme by an approximately equimolar amount of O2 without any requirement for exogenous electrons. The verdoheme formed from alpha-hydroxyheme was shown to be in the ferrous oxidation state by the addition of CO or potassium ferricyanide to the resultant verdoheme-heme oxygenase-1 complex.  相似文献   

10.
Carbon monoxide (CO) is produced during the heme catabolism by heme oxygenase. In brain or blood vessels, CO functions as a neurotransmitter or an endothelial-derived relaxing factor. To verify whether crystallographically proposed CO-trapping sites of rat and cyanobacterial heme oxygenase-1 really work, heme catabolism by heme oxygenase-1 from rat and cyanobacterial Synechocystis sp. PCC 6803 has been scrutinized in the presence of 2-propanol. If 2-propanol occupies the trapping sites, formation of CO-bound verdoheme should be enhanced. Although effects of 2-propanol on the rat heme oxygenase-1 reaction were obscure, the reaction of cyanobacterial enzyme in the presence of NADPH/ferredoxin reductase/ferredoxin was apparently affected. Relative amount of CO-verdoheme versus CO-free verdoheme detected by optical absorption spectra increased as the equivalent of 2-propanol increased, thereby supporting indirectly that the hydrophobic cavity in cyanobacterial enzyme traps CO to reduce CO inhibition of verdoheme degradation.  相似文献   

11.
Mesoheme bound to heme oxygenase protein was easily degraded to mesobiliverdin by incubation with NADPH-cytochrome c reductase and NADPH. The features of mesoheme degradation were very similar to those of protoheme degradation catalyzed by the heme oxygenase system; an intermediate compound having its absorption maximum at 660 nm appeared in the couse of mesoheme degradation and this compound is presumably equivalent to the 688 nm compound which appears in the course of protoheme degradation. Hydroxymesoheme was chemically prepared and a complex of hydroxymesoheme and heme oxygenase was prepared. The complex was fairly stable in air, but when the complex was incubated with the NADPH-cytochrome c reductase system, the hydroxymesoheme bound to heme oxygenase was readily converted to mesobiliverdin through the 660 nm compound as an intermediate. It is evident that hydroxyheme is a real intermediate of heme degradation in the heme oxygenase reaction and that the 688 nm compound (or the 660 nm compound in the mesoheme system) is located between hydroxyheme and the biliverdin-iron chelate. The ferrous state of heme-iron may also be necessary for the onset of further oxidation of hydroxyheme.  相似文献   

12.
Hmu O, a heme degradation enzyme in the pathogen Corynebacterium diphtheriae, catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. A bacterial expression system using a synthetic gene coding for the 215-amino acid, full-length Hmu O has been constructed. Expressed at very high levels in Escherichia coli BL21, the enzyme binds hemin stoichiometrically to form a hexacoordinate high spin hemin-Hmu O complex. When ascorbic acid is used as the electron donor, Hmu O converts hemin to biliverdin with alpha-hydroxyhemin and verdoheme as intermediates. The overall conversion rate to biliverdin is approximately 4-fold slower than that by rat heme oxygenase (HO) isoform 1. Reaction of the hemin-Hmu O complex with hydrogen peroxide yields a verdoheme species, the recovery of which is much less compared with rat HO-1. Reaction of the hemin complex with meta-chloroperbenzoic acid generates a ferryl oxo species. Thus, the catalytic intermediate species and the nature of the active form in the first oxygenation step of Hmu O appear to be similar to those of the mammalian HO. However, the considerably slow catalytic rate and low level of verdoheme recovery in the hydrogen peroxide reaction suggest that the active-site structure of Hmu O is different from that of its mammalian counterpart.  相似文献   

13.
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.  相似文献   

14.
Conversion of iron(II) verdoheme to iron biliverdin in the presence of OH(-) was investigated using B3LYP method. Both 3-21G and 6-31G* basis sets were employed for geometry optimization calculation as well as energy stabilization estimation. Calculation at 6-31G* level was found necessary for a correct spin state estimation of the iron complexes. Two possible pathways for the conversion of iron verdoheme to iron biliverdin were considered. In one path the iron was six-coordinate while in the other it was considered to be five-coordinate. In the six-coordinated pathway, the ground state of bis imidazole iron verdoheme is singlet while that for open chain iron biliverdin it is triplet state with 4.86 kcal/mol more stable than the singlet state. The potential energy surface suggests that a spin inversion take place during the course of reaction after TS. The ring opening process in the six-coordinated pathway is in overall -2.26 kcal/mol exothermic with a kinetic barrier of 9.76 kcal/mol. In the five-coordinated pathway the reactant and product are in the ground triplet state. In this path, hydroxyl ion attacks the iron center to produce a complex, which is only 1.59 kcal/mol more stable than when OH(-) directly attacks the macrocycle. The activation barrier for the conversion of iron hydroxy species to the iron biliverdin complex by a rebound mechanism is estimated to be 32.68 kcal/mol. Large barrier for rebound mechanism, small barrier of 4.18 kcal/mol for ring opening process of the hydroxylated macrocycle, and relatively same stabilities for complexes resulted by the attack of nucleophile to the iron and macrocycle indicate that five-coordinated pathway with direct attack of nucleophile to the 5-oxo position of macrocycle might be the path for the conversion of verdoheme to biliverdin.  相似文献   

15.
N Masuoka  H A Itano 《Biochemistry》1987,26(12):3672-3680
Iron(III) oxyoctaethylporphyrin was isolated and purified as a dimer. The addition of tosylmethyl isocyanide to a solution of the dimer produced a monomer species, which was isolated and identified as bis(tosylmethyl isocyanide)iron(II) 5-oxyoctaethylporphyrin pi-neutral radical. The product of dissociation of the dimer by imidazole was bis(imidazole)iron(III) 5-oxyoctaethylporphyrin. The spectral properties of the product of dissociation of the dimer by pyridine and published data on bis(pyridine)oxymesoheme and bis(pyridine)oxyprotoheme were consistent with its identification as bis(pyridine)iron(II) 5-oxyoctaethylporphyrin pi-neutral radical. When this product was exposed to oxygen, a weak radical signal appeared in its electron spin resonance spectrum, which was attributed to the displacement of one of its pyridine ligands by O2 to form (pyridine)(dioxygen)iron(II) 5-oxyoctaethylporphyrin pi-neutral radical. The pyridine oxygen radical converted spontaneously to octaethylverdohemochrome, which was purified and identified as bis-(tosylmethyl isocyanide)iron(II) octaethylverdohemochrome hydroxide. The yield of verdohemochrome from iron oxyporphyrin was increased by the addition of phenylhydrazine or ascorbate. A scheme for the oxidation of iron(III) oxyporphyrin to iron(II) verdoheme by O2 that proposes a mechanism for the expulsion of CO and the replacement of a methene bridge of the porphyrin ring by an oxa bridge is presented.  相似文献   

16.
The heme biosynthetic and catabolic pathways generate pro- and antioxidant compounds, and consequently, influence cellular sensitivity to oxidants. Heme precursors (delta-aminolevulinic acid, porphyrins) generate reactive oxygen species (ROS), from autoxidation and photochemical reactions, respectively. Heme, an essential iron chelate, serves in respiration, oxygen transport, detoxification, and signal transduction processes. The potential toxicity of heme and hemoproteins points to a critical role for heme degradation in cellular metabolism. The heme oxygenases (HOs) provide this function and participate in cellular defense. This hypothesis emerges from the observation that the activation of HO-1 is an ubiquitous cellular response to oxidative stress. The reaction products of HO activity, biliverdin, and its subsequent metabolite bilirubin, have antioxidant properties. Furthermore, iron released from HO activity stimulates ferritin synthesis, which ultimately provides an iron detoxification mechanism that may account for long-term cytoprotection observed after HO induction. However, such models have overlooked potential pro-oxidant consequences of HO activity. The HO reaction releases iron, which could be involved in deleterious reactions that compete with iron reutilization and sequestration pathways. Indeed, the induction of HO activity may have both pro- and antioxidant sequelae depending on cellular redox potential, and the metabolic fate of the heme iron.  相似文献   

17.
Heme oxygenase and heme degradation   总被引:5,自引:0,他引:5  
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species.  相似文献   

18.
Some Gram-negative pathogens import host heme into the cytoplasm and utilize it as an iron source for their survival. We report here that HmuS, encoded by the heme utilizing system (hmu) locus, cleaves the protoporphyrin ring to release iron from heme. A liquid chromatography/mass spectrometry analysis revealed that the degradation products of this reaction are two biliverdin isomers that result from transformation of a verdoheme intermediate. This oxidative heme degradation by HmuS required molecular oxygen and electrons supplied by either ascorbate or NADPH. Electrons could not be directly transferred from NADPH to heme; instead, ferredoxin-NADP+ reductase (FNR) functioned as a mediator. Although HmuS does not share amino acid sequence homology with heme oxygenase (HO), a well-known heme-degrading enzyme, absorption and resonance Raman spectral analyses suggest that the heme iron is coordinated with an axial histidine residue and a water molecule in both enzymes. The substitution of axial His196 or distal Arg102 with an alanine residue in HmuS almost completely eliminated heme-degradation activity, suggesting that Fe-His coordination and interaction of a distal residue with water molecules in the heme pocket are important for this activity.  相似文献   

19.
The degradation of protoheme in the heme oxygenase reaction involves three oxidation steps: from protoheme to hydroxyheme, from hydroxyheme to a 688-nm substance, a protein-bound intermediate, and from the 688-nm substance to a biliverdin-iron complex. The 688-nm substance has a ferrous iron and it readily binds carbon monoxide to form a CO-complex, called the 638-nm substance (Yoshida, T., Noguchi, M., & Kikuchi, G. (1980) J. Biochem. 88, 557-563). The ferric 688-nm substance was prepared from the 638-nm substance by the addition of potassium ferricyanide together with aspiration to eliminate CO. The ferric 688-nm substance did not show any distinct absorption maximum in the red region of the absorption spectrum. The ferric 688-nm substance was readily reduced on the addition of the NADPH-cytochrome P-450 reductase system, but the ferric 688-nm substance could also be reduced spontaneously though at a very low rate. The ferrous 688-nm substance free from excess reducing agents was prepared by passing the 638-nm substance through a column of Sephadex G-25. The ferrous 688-nm substance was degraded to a biliverdin-iron complex much more rapidly in the presence of the NADPH-cytochrome P-450 reductase system than in its absence, indicating that a reducing equivalent is essential for the initiation of heme degradation even when starting from the ferrous 688-nm substance. Cyanide was found to bind to the ferrous 688-nm substance to form a stable compound; the cyanide compound formed could revert to neither the ferrous 688-nm substance nor the 638-nm substance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Heme oxygenase catalyzes the regiospecific oxidation of hemin to biliverdin IXalpha with concomitant liberation of CO and iron by three sequential monooxygenase reactions. The alpha-regioselectivity of heme oxygenase has been thought to result from the regioselective oxygenation of the heme alpha-meso position at the first step, which leads to the reaction pathway via meso-hydroxyheme IXalpha and verdoheme IXalpha intermediates. However, recent reports concerning heme oxygenase forming biliverdin isomers other than biliverdin IXalpha raise a question whether heme oxygenase can degrade meso-hydroxyhemin and isomers other than the alpha-isomers. In this paper, we investigated the stereoselectivity of each of the two reaction steps from meso-hydroxyhemin to verdoheme and verdoheme to biliverdin by using a truncated form of rat heme oxygenase-1 and the chemically synthesized four isomers of meso-hydroxyhemin and verdoheme. Heme oxygenase-1 converted all four isomers of meso-hydroxyhemin to the corresponding isomers of verdoheme. In contrast, only verdoheme IXalpha was converted to the corresponding biliverdin IXalpha. We conclude that the third step, but not the second, is stereoselective for the alpha-isomer substrate. The present findings on regioselectivities of the second and the third steps have been discussed on the basis of the oxygen activation mechanisms of these steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号