首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

2.
Hepatic microsomal kinetic constants and plasma half-lives and plasma clearances for the metabolism of tolbutamine were measured in the same patients. No significant correlations were found for the seven experiments performed. There was a trend to an inverse correlation between hepatic microsomal cytochrome P-450 content and the plasma clearance. The negative findings suggest a lack of variation in the hepatic drug-metabolizing activities of normal humans.  相似文献   

3.
The effect of propylthiouracil (PTU) pretreatment on in vivo and in vitro oxidative drug metabolism was determined in the rat. Whereas pentobarbital sleeping time (PBST) and zoxazolamine paralysis time (ZZPT) were used as indices of in vivo drug metabolizing activity, biotransformation of aminopyrine and aniline by hepatic microsomal preparations were used as indices of in vitro drug metabolizing enzymes activities. PTU pretreatment significantly prolonged both PBST and ZZPT. Whereas PTU did not affect microsomal protein concentration or cytochrome P-450 content, it significantly decreased microsomal cytochrome c reductase and aniline hydroxylase activities. These changes in enzymatic activities were observed in microsomal preparations from either non-fasted or 24-hr fasted rats. Our results suggest that PTU-induced hypothyroidism modifies the metabolism and effectiveness or toxicity of concomitantly administered drugs.  相似文献   

4.
2-Acetylaminofluorene, 2-aminofluorene, 4-aminobiphenyl, 2-naphthylamine, 2-aminoanthracene and benzidine were assayed for mutagenicity in the Ames test in the presence of hepatic microsomal preparations derived from mouse, hamster, rat, pig and man. Prior to each mutagenicity assay all activation systems were fully characterized with respect to mono-oxygenase and mixed-function amine oxidase activities. All compounds were metabolically activated to mutagens by all activation systems, but with markedly different efficiencies, hamster being the only species which readily activated all amines. The hamster also exhibited the highest ethoxyresorufin O-deethylase and dimethylaniline N-oxidase activities.  相似文献   

5.
Drug metabolism was studied in hepatic microsomal and post microsomal supernatant fractions from male and female athymic nude mice (nu/nu) and heterozygous (+/nu) and homozygous (+/+) wild-type controls. In males, the following enzyme activities were higher in athymic mice than in the wild-type: NADPH cytochrome c reductase, ethylmorphine and aminopyrine N-demethylases, native UDP glucuronyltransferase, and glutathione (GSH) S-aryltransferase. No differences were observed between groups in UDPNAG-activated UDP-glucuronyltransferase, N-acetyltransferase, or aniline hydroxylase activities or in amounts of cytochrome P-450. In female athymic mice, only ethylmorphine and aminopyrine N-demethylase activities were significantly higher than in female wild-type controls (+/+). The female athymic mice had mixed function oxidase activities that were less than the male athymic mice. There were no sex or strain differences in response to treatment with phenobarbital or 3-methylcholanthrene.  相似文献   

6.
Changes in microsomal Na+, K+-, Mg2+- and Ca2+-ATPase activities during cell proliferation were examined in Chinese hamster V-79 (V-79) cells (normal cells) and human HeLaS-3 (HeLaS-3) cells (malignant cells). For V-79 cells, the Mg2+-ATPase activity per cell (pmol Pi/h/cell) in the confluent phase was higher than that in the logarithmically growing (log) phase. The amount of microsomal protein per cell was also high in the confluent phase. Specific activities (mumol Pi/h/mg protein) of Na+, K+-, Mg2+- and Ca2+-ATPase were significantly lower in the confluent phase than in the log phase. For HeLaS-3 cells, an increase in Ca2+-ATPase activity per cell was observed. The amount of microsomal protein per cell did not change between the log and confluent phase. The specific activity of Ca2+-ATPase in the confluent phase was also markedly higher than in the log phase. The relation between changes in ATPase activities and cell proliferation is discussed.  相似文献   

7.
There have been conflicting observations regarding the effects of ketoconazole on hepatic metabolism. The objectives of these studies were to determine whether ketoconazole was an enzyme inducer or inhibitor in the mouse and then to establish the time frame of these ketoconazole-induced enzyme changes. Ketoconazole was administered (150 mg/kg p.o. X 4 days) to male Swiss Webster mice. Biochemical observations over a period of 6 days following treatment indicated that ketoconazole had a temporal biphasic effect on the liver. Although liver weight and microsomal protein were elevated, all other parameters monitored were lower at 2 h following ketoconazole treatment. At 24 h after the last dose of ketoconazole, hepatic biochemical parameters (liver wt., % liver wt./body wt., microsomal protein, and cytochrome P-450) were statistically elevated, while enzyme activities (benzphetamine N-demethylation, 6 beta- and 7 alpha-hydroxylation of testosterone, formation of androstenedione and UDP-glucuronyltransferase) were inhibited. At 72 h the ketoconazole-induced changes in the hepatic biochemical parameters were comparable to those observed at 24 h, and enzymatic parameters generally appeared to be induced by ketoconazole, with the exception of benzphetamine N-demethylase and UDP-glucuronyltransferase, which exhibited lower enzyme activities. Ethoxyresorufin O-deethylase, 7 alpha-hydroxylation of testosterone and glutathione S-transferase, on the other hand, were unaltered by ketoconazole treatment. The opposing effects of ketoconazole on benzphetamine N-demethylase and ethylmorphine N-demethylase at 72 h were further examined. Enzyme kinetics studies indicated that ketoconazole did not effect the Michaelis constants (Km) of the two substrates, but the maximum velocity (Vmax) of the reactions was altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Further characterizations of 20beta-hydroxysteroid dehydrogenase (20beta-HSD) present in liver microsomes of male rats were examined. A significant relationship was observed between 20beta-HSD and acetohexamide reductase (AHR) activities in liver microsomes of male rats. The hepatic microsomal 20beta-HSD and AHR preferentially required NADPH as a cofactor. When NADPH was replaced by NADH, NADP or NAD at the same concentration, these reductase activities were little detected. The hepatic microsomal 20beta-HSD and AHR activities in streptozotocin-induced diabetic rats were much lower than those in the corresponding controls. The hepatic microsomal 20beta-HSD and AHR activities appeared as one main peak, respectively, on DEAE-Sephacel column chromatography, and the peak of 20beta-HSD activity was in good agreement with that of AHR activity. Based on these results, we conclude that 20beta-HSD present in liver microsomes of male rats functions as AHR, and exhibits a carbonyl reductase-like activity.  相似文献   

9.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

10.
We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

11.
12.
Three hexachlorobiphenyl isomers, 2,2′,4,4′,5,5′-hexachlorobiphenyl (I), 2,2′,3,3′,4,4′-hexachlorobiphenyl (II) and 2,2′,3,4,4′,5′-hexachlorobiphenyl (III), have been administered to rats and the effects of these three compounds upon hepatic microsomal drug metabolism and upon hepatic porphyrins have been studied. Comparisons have been made with hexachlorobenzene and a commercial polychlorinated biphenyl mixture, Aroclor 1254. From measurements of activities of microsomal drug oxidations in vitro, the durations of pharmacological actions of certain drugs in vivo and spectral shifts associated with cytochrome P-450 it is shown that the three pure hexachlorobiphenyl isomers initially produce changes in hepatic microsomal activity which resemble those seen after treatment with phenobarbitone (PB). In contrast, following chronic feeding of the isomers, compounds II and III but not I produce a pattern of hepatic microsomal enzyme activity which shows some characteristics of the 3-methylcholanthrene (3-MC) and some characteristics of the phenobarbitone classes of inducer. Also, compounds II and III, but not I, cause accumulation in the liver of porphyrins containing either seven or eight carboxyl groups. These two responses are similar to those observed following hexachlorobenzene treatment and suggest that a relationship may exist between the mixed pattern of enzyme induction and the onset of hepatic porphyrin accumulation.  相似文献   

13.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

14.
The effect of acetylsalicylic acid, ibuprofen, indomethacin, ketoprofen, naproxen, phenylbutazone, and salicylic acid on the microsomal oxidative drug metabolism of rat liver was studied. Pretreatment of the rats with pharmacologic doses of acetylsalicylic acid, indomethacin, and ketoprofen decreased both the demethylase and hydroxylase activities of rat liver microsomes. These effects were paralleled by decreases in microsomal cytochrome P-450 content. The rate of the microsomal reactions was increased after pretreatment with ibuprofen and naproxen but only the former increased the concentration of cytochrome P-450. Phenylbutazone and salicylic acid had no in vivo effect on the hepatic monooxygenase. The addition of 1 mM of ibuprofen, indomethacin, ketoprofen, naproxen, and phenylbutazone to rat liver microsomes inhibit both the aminopyrine N-demethylase and p-nitro-anisole O-demethylase activities. The extent of the inhibition varied between 21 and 73% of the control incubation. Indomethacin, naproxen, and phenylbutazone also decreased the aniline hydroxylase activity to roughly 60% of the control value. Acetylsalicylic acid and salicylic acid had no in vitro effect on the microsomal monooxygenase. The nonsteroidal anti-inflammatory drugs produced a reverse type I binding spectrum with oxidized cytochrome P-450; indomethacin and phenylbutazone were the strongest ligands. There is no correlation between the effect of addition of nonsteroidal anti-inflammatory drugs to the hepatic microsomal homogenate and their in vivo effect on the monooxygenase activity.  相似文献   

15.
Rats were fed by stomach tube with a single dose of glucose, sorbitol, fructose, glycerol or ethanol of equivalent energy contents or with 0.15 M-NaCl. They were killed 6 h later and the relative rates of phosphatidate deacylation and dephosphorylation measured in the microsomal and supernatant fractions of the livers. Treatment with sorbitol, fructose, glycerol and ethanol increased phosphohydrolase activities in the microsomal and supernatant fractions. The only significant change in deacylase activity was an increase in the microsomal fraction produced by ethanol. It is proposed that hepatic triacylglycerol synthesis is partly controlled by the balance between phosphatidate phosphohydrolase and phospholipase A-type activities.  相似文献   

16.
《Biomarkers》2013,18(3):196-201
Abstract

We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

17.
Sex and species differences in hepatic epoxide hydrolase activities towards cis- and trans-stilbene oxide were examined in common laboratory animals, as well as in monkey and man. In general trans-stilbene oxide was found to be a good substrate for epoxide hydrolase activity in cytosolic fractions, whereas the cis isomer was selectively hydrated by the microsomal fraction (with the exception of man, where the cytosol also hydrated this isomer efficiently). The specific cytosolic epoxide hydrolase activity was highest in mouse, followed by hamster and rabbit. Epoxide hydrolase activity in the crude 'mitochondrial' fraction towards trans-stilbene oxide was also highest in mouse and low in all other species examined. Microsomal epoxide hydrolase activity was highest in monkey, followed by guinea pig, human and rabbit, which all had similar activities. Sex differences were generally small, but where significant, male animals had higher catalytic activities than females of the same species in most cases. Antibodies raised against microsomal epoxide hydrolase purified from rat liver reacted with microsomes from all species investigated, indicating structural conservation of this protein. Antibodies directed towards cytosolic epoxide hydrolase purified from mouse liver reacted only with liver cytosol from mouse and hamster and with the 'mitochondrial' fraction from mouse in immunodiffusion experiments. Immunoblotting also revealed reaction with rat liver cytosol. The cytosolic and 'mitochondrial' epoxide hydrolases in all three mouse strains and in both sexes for each strain were immunochemically identical. The anomalies in human liver epoxide hydrolase activities observed here indicate that no single common laboratory animal is a good model for man with regard to these activities.  相似文献   

18.
1. Polychlorinated biphenyls (PCB) are abundant and persistent pollutants in the ecosystem. Commercial mixtures (e.g. Aroclor 1254) can contain up to 80 different isomers and congeners, many of which accumulate in biological systems by the ingestion of PCB-contaminated lipid components of food chains. 2. Commercial mixtures of PCB induce, in hepatic microsomal membranes in vivo, a variety of different forms of the cytochrome P-450 components of enzyme systems involved in the metabolism of drugs and other xenobiotics, and can also induce the proliferation of this membrane. Since these microsomal enzyme systems share a number of the requirements of microsomal fatty acid desaturases, we have investigated whether the induction by PCB in vivo of cytochrome-P-450-linked enzymes in the proliferating hepatic microsomal membrane of the pigeon and the rat is accompanied by increased proportions of polyunsaturated fatty acids in this membrane. 3. The most striking changes observed 120 h after treating pigeons and rats with 1.5 mmol Aroclor 1254/kg body mass were 2.2-fold and 1.6-fold increases, respectively, in the proportion of arachidonic acid in the hepatic microsomal membrane. When the effects of this treatment on the proliferation of this membrane and increase in liver mass are taken into account, the amount of arachidonic acid in the total microsomal membrane of pigeon and rat livers increased 6.7-fold and 1.9-fold, respectively. 4. These changes were accompanied by very significant increases in pigeons and rats of the concentration of hepatic microsomal cytochrome P-450, and in the activity in microsomal protein of a wide range of cytochrome P-450-dependent enzyme involved in the metabolism of drugs and other xenobiotics. 5. This effect of PCB, of increasing in vivo the degree of unsaturation of fatty acids of hepatic microsomal membrane, appears to be a novel finding, and does not seem to have been investigated for other drugs and xenobiotics. Preliminary results have shown that the effect is accompanied by substantial increases in the total activity of delta 6 and delta 5 microsomal fatty acid desaturases converting 18:2 (9, 12) (linoleic acid) to 20:4 (5, 8, 11, 14) (arachidonic acid) [Borlakoglu, J.T., Dils, R.R., Edwards-Webb, J.D. & Walker, C.H. (1988) Biochem. Soc. Trans. 16, 1072]. 6. It is postulated that there is a significant link between increased fatty acid desaturation and the induction of cytochrome-P-450-linked enzymes, and this is discussed in terms of the mechanisms involved in the metabolism of foreign compounds.  相似文献   

19.
Heme synthesis from [2-14C]glycine was studied in liver and red blood cells. In normal rats liver contained two early [14C] heme peaks maximal at 1 and 4.5 h, followed by a long plateau of heme labeling. These phases were present in both microsomes and mitochondria. Cycloheximide suppressed formation of the first but not the second heme component. All phases of hepatic heme labeling were reduced in iron-deficient rats, with better preservation ofthe microsomal fraction. In iron-deficient rats responding to iron therapy, the first peak merged with an enlarged and premature second component; the increase was most marked in mitochondria. Thus, labeled heme metabolism was less perturbed in microsomes than mitochondria in both of these conditions. Peripheral blood also contained a [14C] heme peak at 1 h in all experimental groups. This was highest with the increased eythroid response observed in iron-treated rats. The first heme peak, present in both hepatic and erythroid cells, may represent a pool of free or unassigned heme. The later heme component may reflect formation of hemoproteins, which could be related directly or in directly to the initial, rapid turnover heme component.  相似文献   

20.
The microsomal activities of the hepatic enzymes hydroxymethylglutaryl-CoA reductase and cholesterol 7 alpha-hydroxylase exhibit a diurnal rhythm with maximum activities observed during the dark period and minimum activities around noon (12:00h). This diurnal rhythm was maintained for both enzymes after adrenalectomy, but the amplitude of variation for the activity of both enzymes was greatly decreased. A single injection of cortisol administered to adrenalectomized rats 3h before the expected maximum in enzyme activity resulted in a twofold increase in the activity of both enzymes 3h later, at values similar to those observed for control rats killed at the same time. This response appeared to require protein synthesis, since it was blocked by actinomycin D. However, the administration of cortisol to adrenalectomized rats 3 h before the expected minimum did not result in significant change in the activity of hydroxymethylglutaryl-CoA reductase and cholesterol 7 alpha-hydroxylase 3 h later. Kinetic studies of cholic acid metabolism in vivo demonstrated that adrenalectomy results in a significant decrease in the rate of synthesis of cholic acid and a considerable decrease in the pool size of cholic acid and its metabolic products. Treatment of adrenalectomized rats with cortisol increased the rate oonsistent with the effects of adrenalectomy and cortisol treatment on the activity of cholesterol 7alpha-hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号