首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of elongation of beta-galactosidase and its messenger ribonucleic acid (RNA) were estimated in a polyamine-deficient mutant of Escherichia coli through an analysis of the kinetics of enzyme induction. The chain growth of beta-galactosidase was calculated from the time required after the appearance of an amino terminal fragment of 60 amino acids (auto-alpha) until completed enzyme began to accumulate. The elongation rate of beta-galactosidase messenger RNA was estimated from the time after induction at which streptolydigen-resistant, enzyme-forming capacity first appeared. Upon polyamine starvation, the rate of polypeptide elongation slowed from 17 to 10 amino acids per s and the messenger RNA elongation rate decreased from 47 to 30 nucleotides per s. These reductions in polymerization rates were proportional to the decrease in cellular growth rate produced by polyamine starvation. It was concluded that, although it is quite unlikely that polyamine levels are involved in regulation of cell growth, they may be acting as cofactors in the synthesis of RNA or protein, or both.  相似文献   

2.
H C Lin  S P Lei  G Wilcox 《Gene》1985,34(1):123-128
The nucleotide sequence of gene araA of Salmonella typhimurium LT2 has been determined. The gene encodes an L-arabinose isomerase (EC 5.3.1.4) of 500 amino acid residues with a calculated Mr of 55814. The ATG start codon of araA is 10 bp distal to the TAA termination codon of araB. A presumed ribosome-binding site (RBS) "TAAGGA" 7 bp from the ATG codon overlaps the stop codon of araB. L-Arabinose isomerase was purified and the amino acid composition is in agreement with that predicted from the DNA sequence. The NH2-terminus of the protein is modified as the sequence cannot be analyzed by the automated Edman degradation. Amino acid composition analyses of both NH2-terminal and C-terminal cyanogen bromide (CNBr) cleaved peptides and partial amino acid sequence of the C-terminal peptide are consistent with the deduced amino acid sequence.  相似文献   

3.
A new assay has been described for mutagenicity testing using an l-arabinose-sensitive strain of Salmonella typhimurium. The test strain SV3 and several l-arabinose-resistant mutants selected therefrom are characterized in the present study by 3 different criteria: inhibition of growth by l-arabinose, accumulation of keto-sugars, and activities of the enzymes involved in l-arabinose catabolism. Strain SV3 (ara-531) shows high levels of inducible l-arabinose isomerase (EC 5.3.1.4) and l-ribulokinase (EC 2.7.1.16) activities, but is deficient in l-ribulose-5-phosphate 4-epimerase (EC 5.1.3.4), the enzyme encoded in Escherichia coli by gene D in the araBAD operon. Addition of l-arabinose to SV3 growing in glycerol or casamino acids stops growth. d-Glucose only partially reverses this inhibition. Reversion of the ara-531 mutation restores different levels of epimerase activity and resistance to l-arabinose. However, the great majority of the l-arabinose-resistant mutants do not utilize l-arabinose. The physiological and enzymatic properties of these l-arabinose non-utilizing mutants suggest that l-arabinose resistance is due to forward mutations in at least 3 other genes, araA, araB and araC, blocking steps prior to l-ribulose 5-phosphate accumulation.  相似文献   

4.
The L-arabinose isomerase (L-AI) from Bacillus stearothermophilus US100 is characterized by its high thermoactivity and catalytic efficiency. Furthermore, as opposed to the majority of l-arabinose isomerases, this enzyme requires metallic ions for its thermostability rather than for its activity. These features make US100 L-AI attractive as a template for industrial use. Based on previously solved crystal structures and sequence alignments, we identified amino acids that are putatively important for the US100 L-AI isomerization reaction. Among these, E306, E331, H348, and H447, which correspond to the suggested essential catalytic amino acids of the L-fucose isomerase and the L-arabinose isomerase from Escherichia coli, are presumed to be the active-site residues of US100 L-AI. Site-directed mutagenesis confirmed that the mutation of these residues resulted in totally inactive proteins, thus demonstrating their critical role in the enzyme activity. A homology model of US100 L-AI was constructed, and its analysis highlighted another set of residues which may be crucial for the recognition and processing of substrates; hence, these residues were subjected to mutagenesis studies. The replacement of the D308, F329, E351, and H446 amino acids with alanine seriously affected the enzyme activities, and suggestions about the roles of these residues in the catalytic mechanism are given. The mutation F279Q strongly increased the enzyme's affinity for L-fucose and decreased the affinity for L-arabinose compared to that of the wild-type enzyme, showing the implication of this amino acid in substrate recognition.  相似文献   

5.
RNA and protein elongation rates in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Summary The RNA elongation rate has been measured in yeast by the kinetics of appearance of radioactivity in the different molecular weight classes by the method first developed by Bremer and Yuan (1968). Despite the limitations caused by the breakdown of the 35s rRNA precursor, an estimate of 29 to 38 nucleotides/second at 30° has been obtained for the RNA elongation rate. The protein elongation rate has been calculated by the method of Maaløe and Kjeldgaard (1966) which consists of dividing the number of amino acids polymerized into protein per unit of time by the number of active ribosomes. This has given values of 7 to 9 amino acids/second at 30°.These numbers are of the same order as those found in Escherichia coli when corrected to 37°. Eucaryotic cells could thus have preserved part of the coupling found in bacteria between RNA and protein elongation rates.  相似文献   

6.
As with other inducible enzymes, the induced synthesis of l-arabinose isomerase (l-arabinose ketol isomerase, EC 5.3.1.4) in Salmonella typhimurium is subject to catabolite repression. Of the three catabolite repressors tested, glucose produces maximum repression. Analogues of catabolite repressors like 2-deoxy-d-glucose and d-fucose also inhibit the synthesis of the enzyme. The catabolite repression is completely reversed in the presence of 1.5 x 10(-3)m cyclic 3',5'-adenosine monophosphate (AMP). The maximum repression is produced in glucose-grown cells in glucose-containing induction medium. Cyclic 3',5-AMP reverses this repression provided that the cells are treated with ethylenediaminetetraacetic acid (EDTA). In normal cells, cyclic 3',5'-AMP has no effect on the induction but in EDTA-treated cells the cyclic nucleotide enhances synthesis of the enzyme. The inhibition produced by d-fucose cannot be reversed by cyclic 3',5'-AMP. d-Fucose competes with the inducer l-arabinose in some step(s) involved in the process of induction.  相似文献   

7.
The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicyp 1) was isolated. An open reading frame of gicyp 1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicyp 1). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicyp 1, including tryptophan residue essential for the drug binding. The single copy of the gicyp 1 gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis-->trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of 0.5 microM CsA.  相似文献   

8.
A mathematical model is presented for the steps in the elongation process, and the steady-state elongation rate as a function of the amino acid concentrations is found. In addition, the reset sub-process of the elongation process is modeled. The rate of elongation of peptide chains is found to be a function of the concentration of the amino acid to be bound and the concentration of all other amino acids. In addition, the overall elongation rate depends on the concentrations of elongation factors.  相似文献   

9.
The rate of polypeptide chain elongation during steady-state, polyamine-limited growth of a mutant of Escherichia coli was measured by two independent techniques. Analysis of polysome patterns gave values of 17.5 and 9.5 amino acids per s at 37 C in unstarved and polyamine-limited cells, respectively. From the kinetics of entry of labeled amino acids into polypeptides of defined molecular weights, values at 30 C of 10.1 and 5.8 amino acids per s were obtained for unstarved and polyamine-limited cultures, respectively. Correction of these values to 37 C resulted in rates of 15.0 and 8.7 amino acids per s. These results support the previous conclusion, based on the kinetics of beta-galactosidase induction, that polyamine starvation decreases the rate of protein synthesis by limiting the velocity of polypeptide chain elongation.  相似文献   

10.
Bremer H  Dennis P 《Biochimie》2008,90(3):493-499
We have previously proposed that the rate of ribosome function during balanced growth in E. coli, expressed as the rate of peptide chain elongation, is adjusted by a feedback mechanism: whenever that rate is submaximal (i.e. below 22 amino acid residues polymerized per active ribosome at 37 degrees C), the feedback signal ppGpp is generated by an activation of the ppGpp synthetase expressed from the spoT gene. The accumulation of ppGpp reduces the synthesis of additional ribosomes and thereby reduces the consumption of amino acids which, in turn, allows the remaining ribosomes to function at a higher rate. Here we have described with supporting evidence the proposed feedback loop in greater detail and provided a mathematical analysis which predicts that the SpoT ppGpp synthetase activity should be highest when the ribosomes function at their half-maximal rate. This prediction is consistent with reported observations and is independent of the particular (unknown) mechanism by which the rate of translation controls the ppGpp synthetase activity of SpoT.  相似文献   

11.
Full-length cDNA clones encoding shikimate kinase (EC 2.7.1.71), an enzyme of the central section of the shikimate pathway, have been isolated from tomato (Lycopersicon esculentum L., cv. UC82b). The open reading frame has the capacity to encode a peptide of 300 amino acids. The in-vitro synthesized peptide catalysed the phosphorylation of shikimate thus confirming the identity of the isolated cDNA clones. The N-terminal portion of the deduced amino acid sequence resembles known chloroplast-specific transit peptides. The existence of such a transit peptide was proven by the uptake of the in-vitro synthesized peptide as well as its processing by isolated chloroplasts. Multiple sites of polyadenylation were observed in shikimate kinase mRNAs. The results of Northern and Southern blot analyses are consistent with the existence of only one shikimate kinase gene per haploid genome in tomato. These results are discussed with respect to the dual pathway hypothesis of the shikimate pathway in higher plants.  相似文献   

12.
Du  Mengge  Zhao  Dongying  Cheng  Sisi  Sun  Di  Chen  Ming  Gao  Ziqing  Zhang  Chunzhi 《Bioprocess and biosystems engineering》2019,42(1):107-116
Bioprocess and Biosystems Engineering - l-arabinose isomerase (l-AI) (EC 5. 3. 1. 4. l-AI) that mediates the isomerization of d-galactose to d-tagatose was isolated from Lactobacillus brevis (MF...  相似文献   

13.
The amino acid sequence of rubber elongation factor, a recently discovered protein tightly bound to rubber particles isolated from the commercial rubber tree Hevea brasiliensis, is presented. The role of this protein in rubber elongation and its interaction with prenyltransferase and rubber particles have been discussed in the preceding paper in this series (Dennis, M. S., and Light, D. R. (1989) J. Biol. Chem. 264, 18608-18617). Trypsin, Staphylococcus protease, chymotrypsin, acetic acid, and hydroxylamine cleavage were used to generate peptide fragments that were isolated by reverse phase high pressure liquid chromatography and analyzed by amino acid composition and automated Edman degradation. Each digest contained one blocked peptide identified as the amino terminus. The blocked amino-terminal peptide from the tryptic digest was analyzed by amino acid composition, fast atom bombardment mass spectrometry (molecular ion 1659.9), subdigested with Staphylococcus protease for partial sequence analysis, and finally deblocked with bovine liver acyl-peptide hydrolase removing an acetylalanine to allow analysis by Edman degradation. Rubber elongation factor is 137 amino acids long, has a molecular mass of 14,600 daltons, and lacks four amino acids: cysteine, methionine, histidine, and tryptophan. The NH2 terminus is highly charged and contains only acidic residues (5 of the first 12 amino acids). The first four amino acids are highly represented in other known NH2-terminally acetylated proteins. Comparison of the sequence of rubber elongation factor with other known sequences does not reveal significant sequence similarities that would suggest an evolutionary relationship.  相似文献   

14.
Two Arabidopsis thaliana cDNAs (IPP1 and IPP2) encoding isopentenyl diphosphate isomerase (IPP isomerase) were isolated by complementation of an IPP isomerase mutant strain of Saccharomyces cerevisiae. Both cDNAs encode enzymes with an amino terminus that may function as a transit peptide for localization in plastids. At least 31 amino acids from the amino terminus of the IPP1 protein and 56 amino acids from the amino terminus of the IPP2 protein are not essential for enzymatic activity. Genomic DNA blot analysis confirmed that IPP1 and IPP2 are derived from a small gene family in A. thaliana. Based on northern analysis expression of both cDNAs occurs predominantly in roots of mature A. thaliana plants grown to the pre-flowering stage.  相似文献   

15.
16.
Glucose (xylose) isomerase is an important enzyme in high fructose syrup industry. The enzyme generally occurs intracellularly and is specific for both glucose and xylose. A rare actinomycete Chainia sp. (NCL 82-5-1) produces extracellular specific glucose and xylose isomerases and an intracellular glucose (xylose) isomerase. The intracellular enzyme is isolated by cell autolysis and purified by preparative polyacrylamide gel electrophoresis. Its properties are studied and compared with those of extracellular specific xylose isomerase. The intracellular enzyme has a molecular weight of 1,58,000 daltons with four equal subunits of 40,700 daltons. The N-terminal amino acid sequence analysis shows Arg at the N-terminal. Diethylpyrocarbonate inhibited the enzyme and the inhibition kinetics study shows the presence of at least 2 essential His residues. The amino acid analysis shows the absence of Cys and a high proportion of hydrophobic and acidic amino acids.  相似文献   

17.
In vitro translation with adenovirus polyribosomes.   总被引:3,自引:2,他引:1       下载免费PDF全文
Polyribosomes isolated from adenovirus type 2 (Ad2)-infected HeLa cells late in productive infection can be used for translation in cell-free systems. At least eight viral polypeptides are synthesized, including the precursors to virion polypeptides VI and VII. Separation of polyribosomes by zonal rate centrifugation followed by translation in a cell-free system reveals a correlation between the sizes of the polyribosomes and the polypeptides synthesized. The cell-free extracts incorporate amino acid linearly for only 10 min and show little or no capacity to reinitiate protein synthesis. The elongation efficiency measured as the number of amino acids incorporated per ribosome in 20 min is low, ranging from 10 to 100. The maximum chain elongation rate is estimated to be 10 to 20 amino acids per min. The limited elongation has been used to assess the relative concentration of mRNA's engaged in translation.  相似文献   

18.
The complementary DNAs of the bovine liver membrane-associated 3,5,3'-triiodo-L-thyronine binding protein with 55 k-dalton (T3BP) were cloned and the nucleotide sequences were determined. Monospecific antibodies against T3BP were used to screen a bovine liver cDNA library in lambda gtll. We analyzed the sequences of two cloned T3BP cDNAs. The clones encoded a polypeptide of 510 amino acid residues, including a signal peptide of 20 amino acid. Northern blot analysis of bovine and human RNA showed that the mRNAs encoding T3BP are 2.7 kilobase in length. Amino acid sequence of N-terminal and other three peptides isolated from purified T3BP were found in the predicted amino acid sequence from the cDNA sequence. The predicted amino acid sequence is closely homologous (93%) with that of rat protein disulphide isomerase (EC 5.3.4.1), which catalyzes the isomerization of the protein disulphide bonds and has been shown to play an important role in post-translational regulation. The results suggest that T3BP and protein disulphide isomerase should be the same protein.  相似文献   

19.
Chemical diversity of protein molecules can be expanded through in vitro incorporation of unnatural amino acids in response to a nonsense codon. Chemically misacylated tRNAs are used for tethering unnatural amino acids to a nonsense-mutated target codon (nonsense suppression). In the course of experiments to introduce S-(2-nitrobenzyl)cysteine (NBC) into a targeted location of human erythropoietin, we found that NBC incorporates more efficiently at lower temperatures. In addition, at a fixed reaction temperature, more NBC was incorporated with a reduced supply of ATP. Since the rate of peptide elongation was remarkably higher at the elevated temperature or with enhanced supply of ATP, these results indicate that the efficiency of nonsense suppression is inversely correlated to the peptide elongation rate. Therefore, maximal yield of nonsense-suppressed proteins is obtained at a compromised elongation rate. The present result will offer a primary guideline to optimize the reaction conditions for in vitro production of protein molecules containing unnatural amino acids.  相似文献   

20.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha 2 beta 2 tetramer, catalyses the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. We report here the isolation of cDNA clones coding for the beta-subunit of prolyl 4-hydroxylase from a human hepatoma lambda gt11 library and a corresponding human placenta library. Five overlapping clones covering all the coding sequences and almost all the non-coding sequences were characterized. The size of the mRNA hybridizing with these clones in Northern blotting is approximately 2.5 kb. The clones encode a polypeptide of 508 amino acid residues, including a signal peptide of 17 amino acids. These human sequences were found to be very similar to those recently reported for rat protein disulphide isomerase (EC 5.3.4.1). The degree of homology between these two proteins was 84% at the level of nucleotide sequences or 94% at the level of amino acid sequences. Southern blot analyses of human genomic DNA with a cDNA probe for the beta-subunit indicated the presence of only one gene containing these sequences. The product of a single gene thus appears to possess two different enzymatic functions depending on whether it is present in cells in monomer form or in the prolyl 4-hydroxylase tetramer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号