首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   

2.
In our previous study, we demonstrated that the BRCC2 (breast cancer cell 2) gene is a proapoptotic molecule that interacts with Bcl-XL. BRCC2 downregulation is associated with poor disease-free and overall survival in breast cancer. In this study, we aimed to investigate the role of BRCC2 in tumor suppression in breast cancer. In clinical breast cancer samples, we found that BRCC2 expression was significantly downregulated in cancer lesions compared with paired normal breast tissues. By silencing or overexpressing BRCC2 in breast cancer cells, we found that BRCC2 could inhibit cell growth and metastasis in vitro. An in vivo assay showed that BRCC2 not only dramatically inhibited breast cancer cell xenograft formation and growth but also inhibited breast cancer cell metastasis in a lung metastasis model. Moreover, we demonstrated that BRCC2 inhibited breast cancer metastasis via regulation of the Akt pathway. Thus, our study provided evidence that BRCC2 functions as a novel tumor suppressor in breast cancer and may be a potential therapeutic target for breast cancer management.  相似文献   

3.
Bone is the most common metastatic site for breast cancer. There is a significant need to understand the molecular mechanisms controlling the engraftment and growth of tumor cells in bone and to discover novel effective therapeutic strategies. The aim of this study was to assess the effects of tivantinib and Zoledronic Acid (ZA) in combination in a breast xenograft model of bone metastases. Cancer cells were intracardially implanted into immunodeficient mice and the effects of drugs alone or in combination on bone metastasis were evaluated by in vivo non-invasive optical and micro-CT imaging technologies. Drugs were administered either before (preventive regimen) or after (therapeutic regimen) bone metastases were detectable. In the preventive regimen, the combination of tivantinib plus ZA was much more effective than single agents in delaying bone metastatic tumor growth. When administered in the therapeutic schedule, the combination delayed metastatic progression and was effective in improving survival. These effects were not ascribed to a direct cytotoxic effect of the combined therapy on breast cancer cells in vitro. The results of this study provide the rationale for the design of new combinatorial strategies with tivantinib and ZA for the treatment of breast cancer bone metastases.  相似文献   

4.
The tumor growth inhibition and anti-metastatic effects of peach polyphenolics were investigated in vivo using a xenograft model and MDA-MB-435 breast cancer cells. Results showed that tumor growth and lung metastasis were inhibited in vivo by peach polyphenolics in a dose range of 0.8–1.6 mg/day, and these effects were mediated by inhibition of metalloproteinases gene expression. Modulation of metalloproteinase-2, metalloproteinase-3 and metalloproteinase-13 gene expression may be some of the molecular targets for anti-metastatic activity of peach polyphenolics. Therefore, these compounds may constitute a novel chemopreventive tool to reduce the risk of metastasis in the combination therapy when primary cancer is diagnosed. Conversion to equivalent human intake for future clinical studies using the body surface area normalization method gave a dose of ~370.6 mg/day for a human adult of 60 kg, which can be supplied by consuming two to three peach fruit per day or alternatively using a dietary supplement peach polyphenol extract powder.  相似文献   

5.
Previous studies have shown that Atp6v1c1, a regulator of the assembly of the V0 and V1 domains of the V-ATPase complex, is up-regulated in metastatic oral tumors. Despite these studies, the function of Atp6v1c1 in tumor growth and metastasis is still unknown. Atp6v1c1''s expression in metastatic oral squamous cell carcinoma indicates that Atp6v1c1 has an important function in cancer growth and metastasis. We hypothesized that elevated expression of Atp6v1c1 is essential to cancer growth and metastasis and that Atp6v1c1 promotes cancer growth and metastasis through activation of V-ATPase activity. To test this hypothesis, a Lentivirus-mediated RNAi knockdown approach was used to study the function of Atp6v1c1 in mouse 4T1 mammary tumor cell proliferation and migration in vitro and cancer growth and metastasis in vivo. Our data revealed that silencing of Atp6v1c1 in 4T1 cancer cells inhibited lysosomal acidification and severely impaired 4T1 cell growth, migration, and invasion through Matrigel in vitro. We also show that Atp6v1c1 knockdown with Lenti-c1s3, a lentivirus targeting Atp6v1c1 for shRNA mediated knockdown, can significantly inhibit 4T1 xenograft tumor growth, metastasis, and osteolytic lesions in vivo. Our study demonstrates that Atp6v1c1 may promote breast cancer growth and bone metastasis through regulation of lysosomal V-ATPase activity, indicating that Atp6v1c1 may be a viable target for breast cancer therapy and silencing of Atp6v1c1 may be an innovative therapeutic approach for the treatment and prevention of breast cancer growth and metastasis.  相似文献   

6.
7.

Background

Tissue engineering appears to be an attractive alternative to the traditional approach in the treatment of fracture non-unions. Mesenchymal stromal cells (MSCs) are considered an appealing cell source for clinical intervention. However, ex vivo cell expansion and differentiation towards the osteogenic lineage, together with the design of a suitable scaffold have yet to be optimized. Major concerns exist about the safety of MSC-based therapies, including possible abnormal overgrowth and potential cancer evolution.

Aims

We examined the long-term efficacy and safety of ex vivo expanded bone marrow MSCs, embedded in autologous fibrin clots, for the healing of atrophic pseudarthrosis of the upper limb. Our research work relied on three main issues: use of an entirely autologous context (cells, serum for ex vivo cell culture, scaffold components), reduced ex vivo cell expansion, and short-term MSC osteoinduction before implantation.

Methods and Findings

Bone marrow MSCs isolated from 8 patients were expanded ex vivo until passage 1 and short-term osteo-differentiated in autologous-based culture conditions. Tissue-engineered constructs designed to embed MSCs in autologous fibrin clots were locally implanted with bone grafts, calibrating their number on the extension of bone damage. Radiographic healing was evaluated with short- and long-term follow-ups (range averages: 6.7 and 76.0 months, respectively). All patients recovered limb function, with no evidence of tissue overgrowth or tumor formation.

Conclusions

Our study indicates that highly autologous treatment can be effective and safe in the long-term healing of bone non-unions. This tissue engineering approach resulted in successful clinical and functional outcomes for all patients.  相似文献   

8.
9.
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow cavity as well as for interaction of tumor and bone cells resulting in local bone destruction. Our aim was to develop a model of experimental bone metastasis that allows in vivo assessment of angiogenesis in skeletal lesions using non-invasive imaging techniques.For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into the superficial epigastric artery, which precludes the growth of metastases in body areas other than the respective hind leg1. Following 25-30 days after tumor cell inoculation, site-specific bone metastases develop, restricted to the distal femur, proximal tibia and proximal fibula1. Morphological and functional aspects of angiogenesis can be investigated longitudinally in bone metastases using magnetic resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US).MRI displays morphologic information on the soft tissue part of bone metastases that is initially confined to the bone marrow cavity and subsequently exceeds cortical bone while progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including regional blood volume, perfusion and vessel permeability can be obtained and quantified2-4. Bone destruction is captured in high resolution using morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be located adjacent to sites of intramedullary tumor growth. After contrast agent application, VCT angiography reveals the macrovessel architecture in bone metastases in high resolution, and DCE-VCT enables insight in the microcirculation of these lesions5,6. US is applicable to assess morphological and functional features from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler techniques, structure and perfusion of the soft tissue metastases can be evaluated, respectively. DCE-US allows for real-time imaging of vascularization in bone metastases after injection of microbubbles7.In conclusion, in a model of site-specific breast cancer bone metastases multi-modal imaging techniques including MRI, VCT and US offer complementary information on morphology and functional parameters of angiogenesis in these skeletal lesions.  相似文献   

10.
Geranylgeranyl transferase II (GGTase II) is an enzyme that plays a key role in the isoprenylation of proteins. 3-PEHPC, a novel GGTase II inhibitor, blocks bone resorption and induces myeloma cell apoptosis in vitro. Its effect on bone resorption and tumor growth in vivo is unknown. We investigated the effect of 3-PEHPC on tumor burden and bone disease in the 5T2MM model of multiple myeloma in vivo. 3-PEHPC significantly reduced osteoclast numbers and osteoclast surface. 3-PEHPC prevented the bone loss and the development of osteolytic bone lesions induced by 5T2MM myeloma cells. Treatment with 3-PEHPC also significantly reduced myeloma burden in bone. The magnitude of response was similar to that seen with the bisphosphonate, risedronate. These data show that targeting GGTase II with 3-PEHPC can prevent osteolytic bone disease and reduce tumor burden in vivo, and represents a novel approach to treating tumors that grow in bone.  相似文献   

11.
Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.  相似文献   

12.
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.  相似文献   

13.
Periostin (POSTN), a recently characterised matricellular protein, is frequently dysregulated in various malignant cancers and promotes tumor metastatic growth. POSTN plays a critical role in the crosstalk between murine breast cancer stem cells (CSCs) and their niche to permit metastatic colonization. However, whether pro-metastatic capability of POSTN is associated with multipotent potentials of mesenchymal stem cells (MSCs) has not been documented. Here we demonstrate that POSTN promotes a stem cell-like trait and a mesenchymal phenotype in human mammary epithelial cells and breast cancer cells. Interestingly, ectopic overexpression of POSTN or recombinant POSTN treatment can induce human mammary epithelial cells and breast cancer cells differentiation into multiple cell lineages that recapitulate part of the multilineage differentiation potentials of MSCs. Moreover, POSTN is highly expressed in bone marrow-derived MSCs and their derived adipocytes, chondrocytes, and osteoblasts in vitro. Furthermore, POSTN promotes the growth of xenograft tumors in vivo. POSTN-overexpressing human mammary epithelial cells enhance breast tumor growth and metastasis. These data thus provide evidence of a new role for POSTN in mammary epithelial neoplasia and metastasis, suggesting that epithelial cancer cells might acquire CSC-like traits and a mesenchymal phenotype, as well as the multipotent potentials of MSCs to promote tumorigenesis and metastasis. Therefore, targeting POSTN and other extracellular matrix components of tumor microenvironment may help to develop new therapeutical strategies to inhibit tumor metastasis.  相似文献   

14.
15.
Osteosarcoma (OS) is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA), is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells'' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.  相似文献   

16.
《Translational oncology》2021,14(11):101203
Chemotherapy resistant high grade serous ovarian cancer remains a clinically intractable disease with a high rate of mortality. We tested a novel glycosylated antitumor ether lipid called l-Rham to assess the in vitro and in vivo efficacy on high grade serous ovarian cancer cell lines and patient samples. l-Rham effectively kills high grade serous ovarian cancer cells grown as 2D or 3D cultures in a dose and time dependent manner. l-Rham efficacy was tested in vivo in a chicken allantoic membrane/COV362 xenograft model, where l-Rham activity was as effective as paclitaxel in reducing tumor weight and metastasis. The efficacy of l-Rham to reduce OVCAR3 tumor xenografts in NRG mice was assessed in low and high tumor burden models. l-Rham effectively reduced tumor formation in the low tumor burden group, and blocked ascites formation in low and high tumor burden animals. l-Rham demonstrates efficacy against OVCAR3 tumor and ascites formation in vivo in NRG mice, laying the foundation for further development of this drug class for the treatment of high grade serous ovarian cancer patients.  相似文献   

17.
Ovarian cancer (OC) is the deadliest gynecological cancer and is currently incurable with standard treatment regimens. Early invasion, intraperitoneal metastasis, and an aggressive course are the hallmarks of OC. The major reason for poor prognosis is a lack of molecular targets and highly effective targeted therapies. Therefore, identification of novel molecular targets and therapeutic strategies is urgently needed to improve OC survival. Herein we report that eukaryotic elongation factor-2 kinase (EF2K) is highly upregulated in primary and drug-resistant OC cells and its expresssion associated with progression free survival TCGA database) and promotes cell proliferation, survival, and invasion. Downregulation of EF2K reduced expression of integrin β1 and cyclin D1 and the activity of the Src, phosphoinositide 3-kinase/AKT, and nuclear factor-κB signaling pathways. Also, in vivo, therapeutic targeting of EF2K by using single-lipid nanoparticles containing siRNA led to substantial inhibition of ovarian tumor growth and peritoneal metastasis in nude mouse models. Furthermore, EF2K inhibition led to robust apoptosis and markedly reduced intratumoral proliferation in vivo in ovarian tumor xenografts and intraperitoneal metastatic models. Collectively, our data suggest for the first time that EF2K plays an important role in OC growth, metastasis, and progression and may serve as a novel therapeutic target in OCs.  相似文献   

18.
Bone is the most common site of breast cancer metastasis and once established, it is frequently incurable. Critical to our ability to prevent and treat bone metastasis is the identification of the key factors mediating its establishment and understanding their biological function. To address this issue we previously carried out an in vivo selection process to isolate murine mammary tumor sublines possessing an enhanced ability to colonize the bone. A comparison of gene expression between parental cells and sublines by genome-wide cDNA microarray analysis revealed several potential mediators of bone metastasis, including the pyrophosphate-generating ectoenzyme Enpp1. By qRT-PCR and Western analysis we found that expression of Enpp1 was elevated in human breast cancer cell lines known to produce bone metastasis in animal models compared to non-metastatic and normal mammary epithelial cell lines. Further, in clinical specimens, levels of Enpp1 were significantly elevated in human primary breast tumors relative to normal mammary epithelium, with highest levels observed in breast-bone metastasis as determined by qRT-PCR and immunohistochemical analysis. To examine the potential role of Enpp1 in the development of bone metastasis, Enpp1 expression was stably increased in the breast cancer cell line MDA-MB-231 and the ability to colonize the bone following intracardiac and direct intratibial injection of athymic nude mice was determined. By both routes of administration, increased expression of Enpp1 enhanced the ability of MDA-MB-231 cells to form tumors in the bone relative to cells expressing vector alone, as determined by digital radiography and histological analysis. Taken together, these data suggest a potential role for Enpp1 in the development of breast cancer bone metastasis.  相似文献   

19.
Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.  相似文献   

20.
Interleukin (IL)-20 is a proinflammatory cytokine in the IL–10 family. IL–20 is associated with tumor promotion in the pathogenesis of oral, bladder, and breast cancer. However, little is known about the role of IL–20 in prostate cancer. We hypothesize that IL–20 promotes the growth of prostate cancer cells. Immunohistochemical staining showed that IL–20 and its receptors were expressed in human PC–3 and LNCaP prostate cancer cell lines and in prostate tumor tissue from 40 patients. In vitro, IL–20 upregulated N-cadherin, STAT3, vimentin, fibronectin, RANKL, cathepsin G, and cathepsin K, and increased the migration and colony formation of prostate cancer cells via activated p38, ERK1/2, AKT, and NF-κB signals in PC–3 cells. We investigated the effects of anti-IL–20 monoclonal antibody 7E on prostate tumor growth in vivo using SCID mouse subcutaneous and intratibial xenograft tumor models. In vivo, 7E reduced tumor growth, suppressed tumor-mediated osteolysis, and protected bone mineral density after intratibial injection of prostate cancer cells. We conclude that IL–20 is involved in the cell migration, colony formation, and tumor-induced osteolysis of prostate cancer. Therefore, IL–20 might be a novel target for treating prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号