首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a series of fourteen 2-mercapto-4(3H)-quinazolinone derivatives was synthesised and evaluated as potential inhibitors of the human monoamine oxidase (MAO) enzymes. Quinazolinone is the oxidised form of quinazoline, and although this class has not yet been extensively explored as MAO inhibitors, it has been shown to possess a wide variety of biological activities. Among the quinazolinone derivatives investigated, seven compounds (IC50?<?1?µM) proved to be potent and specific MAO-B inhibitors, with the most potent inhibitor, 2-[(3-iodobenzyl)thio]quinazolin-4(3H)-one, exhibiting an IC50 value of 0.142?μM. Further investigation showed that this inhibitor is a reversible and competitive inhibitor of MAO-B with a Ki value of 0.068?µM. None of the test compounds were MAO-A inhibitors. Analysis of the structure-activity relationships (SARs) for MAO-B inhibition shows that substitution on the C2 position of quinazolinone with a benzylthio moiety bearing a Cl, Br or I on the meta position yields the most potent inhibitors of the series. In contrast, substitution with the unsubstituted benzylthio moiety (IC50?=?3.03?µM) resulted in significantly weaker inhibition activity towards MAO-B. This study suggests that quinazolinones are promising leads for the development of selective MAO-B inhibitors which may be used for the treatment of neurodegenerative disorders such as Parkinson’s disease.  相似文献   

2.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven’t been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC50 of 34?nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC50 of 9?μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.  相似文献   

3.
Mycobacterium tuberculosis glutamate racemase is an essential enzyme involved in peptidoglycan synthesis and conserved in most bacteria. Small molecule inhibitors were reported on other bacterial species whereas in M. tuberculosis it wasn’t explored much. In this study we have screened in house compound library using fluorescence thermal shift assay and enzyme inhibition assay, form this (1-(3-(benzo[d]thiazol-2-yl)phenyl)-3-(p-tolyl)thiourea) was identified as lead compound with IC50 19.47?±?0.81?μM. Further lead optimization by synthesis resulted in twenty-three compounds, of which Compound 25?has shown more efficacy compared to lead 1 showing non-competitive mode of inhibition with IC50 1.32?±?0.43?μM. It also showed significant activity (represented in log reduction) in nutrient starved dormant M. tuberculosis model (2.1), M. tuberculosis biofilm assay (2.0) and in vivo M. marinum infected zebrafish model (3.5).  相似文献   

4.
New heteroaryl HIV-protease inhibitors bearing a carbamoyl spacer were synthesized in few steps and high yield, from commercially available homochiral epoxides. Different substitution patterns were introduced onto a given isopropanoyl-sulfonamide core that can have either H or benzyl group. The in vitro inhibition activity against recombinant protease showed a general beneficial effect of both carbamoyl moiety and the benzyl group, ranging the IC50 values between 11 and 0.6?nM. In particular, benzofuryl and indolyl derivatives showed IC50 values among the best for such structurally simple inhibitors. Docking analysis allowed to identify the favorable situation of such derivatives in terms of number of interactions in the active site, supporting the experimental results.The inhibition activity was also confirmed in HEK293 mammalian cells and was maintained against protease mutants. Furthermore, the metabolic stability was comparable with that of the commercially available inhibitors.  相似文献   

5.
Development of novel DNA gyrase B inhibitors is an important field of antibacterial drug discovery whose aim is to introduce a more effective representative of this mechanistic class into the clinic. In the present study, two new series of Escherichia coli DNA gyrase inhibitors bearing the 4,5-dibromopyrrolamide moiety have been designed and synthesized. 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives inhibited E. coli DNA gyrase in the submicromolar to low micromolar range (IC50 values between 0.891 and 10.4 μM). Their “ring-opened” analogues, based on the 2-(2-aminothiazol-4-yl)acetic acid scaffold, displayed weaker DNA gyrase inhibition with IC50 values between 15.9 and 169 μM. Molecular docking experiments were conducted to study the binding modes of inhibitors.  相似文献   

6.
Bleomycin is considered to exert its antitumor activity via DNA cleavage mediated by activated oxygen generated from the iron complex in its chelator moiety. Spin-offs from this moiety, HPH-1Trt and HPH-2Trt, with anti-cancer activities were recently synthesized. In this paper, we developed inhibitors of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of Sirtuin protein (SIRT2), based on HPH-1Trt/HPH-2Trt, and aimed to generate new anti-cancer drugs. HPH-1Trt and HPH-2Trt had in vitro anti-SIRT2 inhibitory activity with 50% inhibitory concentration (IC50) values of 5.5 and 8.8?μM, respectively. A structural portion of HPH-1Trt/HPH-2Trt, a tritylhistidine derivative TH-1, had stronger activity (IC50?=?1.7?μM), and thus, fourteen derivatives of TH-1 were synthesized. Among them, TH-3 had the strongest activity (IC50?=?1.3?μM). Selective binding of TH-3 in the pocket of SIRT2 protein was confirmed with a molecular docking study. Furthermore, TH-3 strongly lowered viability of the breast cancer cell line MCF7 with an IC50 of 0.71?μM. A structure-activity relationship study using cell lines suggested that the mechanism of TH-3 to suppress MCF7 cells involves not only SIRT2 inhibition, but also another function. This compound may be a new candidate anti-cancer drug.  相似文献   

7.
Thymidine phosphorylase (TP) is an angiogenic enzyme. It plays an important role in angiogenesis, tumour growth, invasion and metastasis. In current research work, we study the effect of structural modification of dihydropyrimidine-2-ones (DHPM-2-ones) on TP inhibition. A series of eighteen new derivatives of 3,4-dihydropyrimidone-2-one were designed and synthesized through the structural modification at C-6 position. All these new derivatives were then assessed for in-vitro inhibition of thymidine phosphorylase (TP) from E. coli. Oxadiazole derivatives 4a-e exhibited excellent TP-inhibition at low micromolar concentration levels better than standard drug 7-deazaxanthine (7-DX). Among all these compounds, 4b was found to be the most potent with IC50 = 1.09 ± 0.004 μM. Anti-angiogenesis potential of representative compounds were also studied in a chorioallantoic membrane (CAM) assay. Here again, compound 4b was found to be the potent anti-angiogenesis compound in a CAM assay. Docking studies were also performed with Molecular Operating Environment (MOE) to further analyse the mode of inhibition of these compounds. Binding mode analysis of the most active inhibitors showed that these are well accommodated into the binding site of enzyme though stable hydrogen bonding and hydrophobic interactions.  相似文献   

8.
Novel nonpeptide small molecule renin inhibitors bearing an N-isopropyl P1 motif were designed based on initial lead structures 1 and aliskiren (2). (P3–P1)-Benzamide derivatives such as 9a and 34, as well as the corresponding P1 basic tertiary amine derivatives 10 and 35 were found to display low nanomolar inhibition against human renin in vitro.  相似文献   

9.
Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.  相似文献   

10.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

11.
5-Lipoxygenase (5-LOX) is a key enzyme involved in the biosynthesis of pro-inflammatory leukotrienes, leading to asthma. Developing potent 5-LOX inhibitors especially, natural product based ones, are highly attractive. Coumaperine, a natural product found in white pepper and its derivatives were herein developed as 5-LOX inhibitors. We have synthesized twenty four derivatives, characterized and evaluated their 5-LOX inhibition potential. Coumaperine derivatives substituted with multiple hydroxy and multiple methoxy groups exhibited best 5-LOX inhibition. CP-209, a catechol type dihydroxyl derivative and CP-262-F2, a vicinal trihydroxyl derivative exhibited, 82.7% and 82.5% inhibition of 5-LOX respectively at 20?µM. Their IC50 values are 2.1?±?0.2?µM and 2.3?±?0.2?µM respectively, and are comparable to zileuton, IC50?=?1.4?±?0.2?µM. CP-155, a methylenedioxy derivative (a natural product) and CP-194, a 2,4,6-trimethoxy derivative showed 76.0% and 77.1% inhibition of 5-LOX respectively at 20?µM. Antioxidant study revealed that CP-209 and 262-F2 (at 20?µM) scavenged DPPH radical by 76.8% and 71.3% respectively. On the other hand, CP-155 and 194 showed very poor DPPH radical scavenging activity. Pseudo peroxidase assay confirmed that the mode of action of CP-209 and 262-F2 were by redox process, similar to zileuton, affecting the oxidation state of the metal ion in the enzyme. On the contrary, CP-155 and 194 probably act through some other mechanism which does not involve the disruption of the oxidation state of the metal in the enzyme. Molecular docking of CP-155 and 194 to the active site of 5-LOX and binding energy calculation suggested that they are non-competitive inhibitors. The In-Silico ADME/TOX analysis shows the active compounds (CP-155, 194, 209 and 262-F2) are with good drug likeliness and reduced toxicity compared to existing drug. These studies indicate that there is a great potential for coumaperine derivatives to be developed as anti-inflammatory drug.  相似文献   

12.
In this study, novel series of thioureido-benzenesulfonamide derivatives bearing an enaminone linker either meta or para oriented and having terminal linear or substituted aromatic or heteroaromatic ring system 516a,b were designed and synthesized based on the general pharmacophoric features of type II VEGFR2 inhibitors. Evaluation of the synthesized compounds against HEPG2 hepatocellular carcinoma cells in vitro identified compounds 5b, 6b and 1013b as most active anticancer agents with IC50 equal to 0.12, 0.29, 0.58, 0.44, 0.42 and 0.66?µM, respectively. These compounds were evaluated for their ability to in vitro inhibit VEGFR2 kinase enzyme. The results demonstrated highly potent dose-related VEGFR2 inhibition with IC50 values in nanomolar range (33, 57, 210, 37, 37 and 220?nM, respectively). The radiosensitizing ability of the most promising compounds was studied which showed an increase in the cell killing effect of radiation after combination with the synthesized compounds which revealed lowered IC50 by nearly 50%. Molecular docking for the most potent compounds was performed to predict their possible binding mode within VEGFR2 active site and they showed binding affinity in a similar way to sorafenib.  相似文献   

13.
A series of novel pyrimidinedione derivatives were designed and evaluated for in vitro dipeptidyl peptidase-4 (DPP-4) inhibitory activity and in vivo anti-hyperglycemic efficacy. Among them, the representative compounds 11, 15 and 16 showed excellent inhibitory activity of DPP-4 with IC50 values of 64.47?nM, 188.7?nM and 65.36?nM, respectively. Further studies revealed that compound 11 was potent in vivo hypoglycemic effect. The structure–activity relationships of these pyrimidinedione derivatives had been discussed, which would be useful for developing novel DPP-4 inhibitors as treating type 2 diabetes.  相似文献   

14.
Ligase MurM catalyses the addition of Ala from alanyl-tRNAAla, or Ser from seryl-tRNASer, to lipid intermediate II in peptidoglycan biosynthesis in Streptococcus pneumoniae, and is a determinant of high-level penicillin resistance. Phosphorus-based transition state analogues were designed as inhibitors of the MurM-catalysed reaction. Phosphonamide analogues mimicking the attack of a lysine nucleophile upon Ala-tRNAAla showed no inhibition of MurM, but adenosine 3′-phosphonate analogues showed inhibition of MurM, the most active being a 2′-deoxyadenosine analogue (IC50 100 μM). Structure/function studies upon this analogue established that modification of the amino group of the aminoalkylphosphonate resulted in loss of potency, and modification of the adenosine 5′-hydroxyl group with either a t-butyl dimethyl silyl or a carbamate functional group resulted in loss of activity. A library of 48 aryl sulfonamides was also screened against MurM using a radiochemical assay, and two compounds showed sub-millimolar inhibition. These compounds are the first small molecule inhibitors of the Fem ligase family of peptidyltransferases found in Gram-positive bacteria.  相似文献   

15.
In view of expanding the structure activity relationship of xanthine oxidase inhibitors, a series of 3-oxo-6-aryl-2,3-dihydropyridazine-4-carbohydrazide/carboxylic acid derivatives were designed by molecular docking and synthesized. All the target compounds were evaluated for their in vitro XO inhibition by using febuxostat and allopurinol as the standard controls. Most of the hydrazide derivatives exhibited potency levels in the micromolar range. From the view of docking study, hydrazide derivatives bind to the active site of XO through a novel interaction mode, which is different from that of febuxostat bearing a carboxyl group. The most promising compound 8b was further subjected to kinetic analysis to deduce their modes of inhibition.  相似文献   

16.
A small library of (E) α,β-unsaturated fatty acids was prepared, and 20 different saturated and mono-unsaturated fatty acids differing in chain length were subjected to Ellman’s assays to determine their ability to act as inhibitors for AChE or BChE. While the compounds were only very weak inhibitors of BChE, seven molecules were inhibitors of AChE holding IC50?=?4.3–12.8?M with three of them as significant inhibitors of this enzyme. The results have shown trans 2-mono-unsaturated fatty acids are better inhibitors for AChE than their saturated analogs. Furthermore, the screening results indicate that the chain length is crucial for obtaining an inhibitory efficacy. The best results were obtained for (2E) eicosenoic acid (14) showing inhibition constants Ki?=?1.51?±?0.09?M and Ki′?=?7.15?±?0.55?M. All tested compounds were mixed-type inhibitors with a dominating competitive part. Molecular modelling calculations indicate a different binding mode of active/inactive compounds for the enzymes AChE and BChE.  相似文献   

17.
A series of 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). The in vitro assays indicated that most of these derivatives were selective AChE inhibitors with good multifunctional properties. Among them, compounds 11b and 11d displayed comprehensive advantages, with good AChE (IC50?=?0.29?±?0.01?μM and 0.46?±?0.02?μM, respectively), MAO-A (IC50?=?8.2?±?0.08?μM and 7.9?±?0.07?μM, respectively) and MAO-B (IC50?=?20.1?±?0.16?μM and 43.8?±?2.0% at 10?μM, respectively) inhibitory activities, moderate self-induced Aβ1–42 aggregation inhibitory potency (35.4?±?0.42% and 48.0?±?1.53% at 25?μM, respectively) and potential antioxidant activity. In addition, the two representative compounds displayed high BBB permeability in vitro. Taken together, these multifunctional properties make 11b and 11d as a promising candidate for the development of efficient drugs against AD.  相似文献   

18.
Thirty-eight chalcone derivatives bearing a chromen or benzo[f]chromen moiety were synthesized and evaluated for their anti-inflammatory and analgesic activities. Using an ear edema model, anti-inflammatory activities were observed for compounds 3a-3s (ear inflammation: 1.75–3.71 mg) and 4a-4s (ear inflammation: 1.71–4.94 mg). All compounds also displayed analgesic effects with inhibition values of 66.7–100% (3a-3s) and 96.2–100% (4a-4s). The 12 compounds that displayed excellent anti-inflammatory and analgesic effects were tested for their inhibitory activity against ovine COX-1 and COX-2. Six compounds bearing a chromen moiety were weak inhibitors of the COX-1 isozyme but showed moderate COX-2 isozyme inhibitory effects (IC50s from 0.37 μM to 0.83 μM) and COX-2 selectivity indexes (SI: 22.49–9.34). Those bearing a benzo[f]chromen moiety were more selective toward COX-2 than those bearing a chromen moiety with IC50s from 0.25 μM to 0.43 μM and COX-2 selectivity indexes from SI: 31.08 to 20.67.  相似文献   

19.
Histone deacetylase 6 (HDAC6) is an established drug target for cancer treatment. Inhibitors of HDAC6 based on a hydroxamic acid zinc binding group (ZBG) are often associated with undesirable side effects. Herein, we describe the identification of HDAC6 inhibitors based on a completely new 3-hydroxy-isoxazole ZBG. A series of derivatives decorated with different aromatic or heteroaromatic linkers, and various cap groups were synthesised and biologically tested. In vitro tests demonstrated that some compounds are able to inhibit HDAC6 with good potency, the best candidate reaching an IC50 of 700 nM. Such good potency obtained with a completely new ZBG make these compounds particularly attractive. The effect of the most active inhibitors on the acetylation levels of histone H3 and α- tubulin and their anti-proliferative activity of DU145 cells were also investigated. Docking studies were performed to evaluate the binding mode of these new derivatives and discuss structure-activity relationships.  相似文献   

20.
The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase linked to various kinds of cancers. Consequently, SHP2 has emerged as a promising target for novel anti-cancer agents. Using scaffold-hopping strategy, a series of benzo[c][1,2,5]thiadiazole derivatives was designed from PTP1B inhibitors with 1H-2,3-Dihydroperimidine motif, synthesized and evaluated their biological activities against PTP1B and SHP2. Among them, the representative compound 11g displayed SHP2 inhibitory activity with IC50 of 2.11?±?0.99?μM, exhibited 2.02-fold and 25-fold selectivity for SHP2 over SHP1 and PTP1B respectively and had no visible activity against TCPTP. These preliminary results could provide a possible opportunity for the development of novel SHP2 inhibitors with optimal potency and improved pharmacological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号