首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation, new chloroquinoline derivatives bearing vinyl benzylidene aniline substituents at 2nd position were synthesized and screed for biofilm inhibitory, antifungal and antibacterial activity. The result of biofilm inhibition of C. albicans suggested that compounds 5j (IC50 value?=?51.2?μM) and 5a (IC50 value?=?66.2?μM) possess promising antibiofilm inhibition when compared with the standard antifungal drug fluconazole (IC50?=?40.0?μM). Two compounds 5a (MIC?=?94.2?μg/mL) and 5f (MIC?=?98.8?μg/mL) also exhibited good antifungal activity comparable to standard drug fluconazole (MIC?=?50.0?μg/mL). The antibacterial screening against four strains of bacteria viz. E. coli, P. aeruginosa, B. subtilis, and S. aureus suggested their potential antibacterial activity and especially all the compounds except 5g were found more active than the standard drug ciprofloxacin against B. subtilis. To further gain insights into the possible mechanism of these compounds in biofilm inhibition through the agglutinin like protein (Als), molecular docking and molecular dynamics simulation studies were carried out. Molecular modeling studies suggested the clear role in inhibition of this protein and the resulting biofilm inhibitory activity.  相似文献   

2.
A new series of 1,4-dihydropyridine derivatives (2a–h, 3a–e, and 4a–e) were systematically designed and synthesized via ultrasound irradiation methods with easy work-up and good yields. Compounds structures were confirmed by IR, 1H NMR, 13C NMR, and mass spectra. The synthesized compounds were screened for both antimicrobial and anticoagulant activities. Compound 2e (MIC: 0.25?μg/mL) was highly active against Escherichia coli and compound 2c (MIC: 0.5?μg/mL) was also highly active against Pseudomonas aeruginosa compared with ciprofloxacin. (MIC: 1?μg/mL) The antifungal activity of 2c (MIC: 0.5?μg/mL) against Candida albicans was high relative to that of clotrimazole (MIC: 1?μg/mL). Anticoagulant activity was determined by activated partial thromboplastin time (APTT) and prothrombin time (PT) coagulation assays. Compound 4-(4-hydroxyphenyl)-2,6-dimethyl-N3,N5-bis(5-phenyl-1,3,4-thiadiazol-2-yl)-1,4-dihydropyridine-3,5-dicarboxamide 3d (>1000?s in APTT assays) was highly active in anticoagulant screening compared with the reference of heparin.Cytotoxicity was evaluated using HepG2 (liver), HeLa (cervical), and MCF-7 (breast) cancer cell lines, with high toxicities observed for 2c (GI50?=?0.02?μm) against HeLa cell line and 2e (GI50?=?0.03?μm) equipotant against MCF-7 cell line. Therefore, the compounds 2e, 2c and 3d can serve as lead molecules for the development of new classes of antimicrobial and anticoagulant agent.  相似文献   

3.
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-g via Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were?≥512?μg/ml, while that against A. baumannii was?≥128?μg/ml except for nanoformulae of 13e and 13f that were 16 and 64?μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC?>?1024?μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.  相似文献   

4.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

5.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

6.
A series of N-sulfonaminoethyloxime derivatives of dehydroabietic acid were synthesized and investigated for their antibacterial activity against Staphylococcus aureus Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108 and NRS-271). Most of the target compounds having chloro, bromo, trifluoromethyl phenyl moiety exhibited potent in vitro antistaphylococcal activity. The meta-CF3 phenyl derivative T23 showed the highest activity with MIC of 0.39–0.78?μg/mL against S. aureus Newman, while several analogues showed similar potent antibacterial activity with MIC values between 0.78 and 1.56?μg/mL against five multidrug-resistant S. aureus. The stability of T35 in plasma of SD rat and the cellular cytotoxicity were also evaluated.  相似文献   

7.
A series of fourteen novel synthesized arylazothiazole and arylhydrazothiazole derivatives were tested for their antifungal activity and structure-activity relationship. The activity of the compounds depends mainly on the side chains of the nucleus compound. The antifungal activity was more significant when both side chains are aromatic?>?one aromatic and one aliphatic and substituted aromatic with CH3 or OCH3?>?non-substituted?>?substituted aromatic with chloro- or nitro-groups. Thiazole derivatives 7a, 7c, 7e, 7f, 7?g, 7i, 7?m, and 11a showed the most effective as antifungal compounds and were comparable with fluconazole as antifungal reference drug when investigated against Candida albicans, Microsporum gypseum and Trichophyton mentagrophytes. The minimum inhibitory concentration (MIC) reached 2?µg/mL in the case of C. albicans for compounds 7a, 7b, 7c and 11a and measured 4?µg/mL in the case of M. gypseum and T. mentagrophytes for the same compounds. The minimum fungicidal concentration (MFC) for the same compounds was 4?µg/mL for C. albicans and ranged from 8 to 32?µg/mL for the other two fungi. The results revealed that compounds 7c and 11a were the most antifungal compounds against the test fungi regarding keratinase activity and ergosterol biosynthesis. The in vivo efficacy of synthesized thiazoles 7c and 11a applied at their respective MFC was more effective in the treatment of skin infection of guinea pigs previously inoculated with the test fungi as compared with fluconazole. The Molecular Operating Environment (MOE) software was used to analyze the docking poses and binding energies of compound 11a and keratinase. The computational studies supported the biological activity results.  相似文献   

8.
A series of novel (E)-4-oxo-2-crotonamide derivatives were designed and synthesized to find potent antituberculosis agents. All the target compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv(MTB). Results reveal that 4-phenyl moiety at part A and short methyl group at part C were found to be favorable. Most of the derivatives displayed promising activity against MTB with MIC ranging from 0.125 to 4?µg/mL. Especially, compound IIIa16 was found to have the best activity with MIC of 0.125?μg/mL against MTB and with MIC in the range of 0.05–0.48?µg/mL against drug-resistant clinical MTB isolates.  相似文献   

9.
A series of l-pyroglutamic acid analogues from natural product lead were designed and synthesized, as well as their antifungal activities against Phytophthora infestans, neuritogenic activities, antibacterial activities and anti-inflammatory activities are described. The bioassays and SAR study showed that the majority of l-pyroglutamic acid esters have a significant antifungal activity against P. infestans, especially 2d and 2j demonstrated the best activities with EC50 values of 1.44 and 1.21?μg?mL?1, which were about seven times that of commercial azoxystrobin (7.85?μg?mL?1). Moreover, compounds 2e, 2g and 4d displayed anti-inflammatory activity against LPS-induced NO production in BV-2 microglial cells; neuritogenic activity in NGF-induced PC-12 cells is the same activity. This study demonstrates that compounds 2d and 2j are potential drugs to control P. infestans.  相似文献   

10.
Two new trichothecene sesquiterpenes, trichobreols D (1) and E (2), were isolated from the culture broth of marine-derived Trichoderma cf. brevicompactum together with trichobreol A (3). The structures of 1 and 2 were assigned on the basis of their spectroscopic data. Compound 1 inhibited the growth of two yeast-like fungi, Candida albicans and Cryptococcus neoformans, with equivalent MIC values (6.3 μg/mL), while 2 gave MIC values of 12.5 and 25 μg/mL, respectively. The antifungal activities of five semisynthetic derivatives (48) prepared from 3 were evaluated and compared to investigate the preliminary structure-activity relationship.  相似文献   

11.
Some thiazolyl hydrazones were synthesized by one pot reaction of thiophene-2-carbaldehyde or 2, 4-dichlorobenzaldehyde, thiosemicarbazide and various phenacyl bromides which were preliminarily screened for in vitro antioxidant and antifungal activities. Excellent DPPH and H2O2 radical scavenged antioxidant activities were observed with almost all the tested compounds. Compounds 4a, 4b, 4c, 4e, 4f and 4i showed comparable DPPH scavenged antioxidant potential (90.26–96.56%) whereas H2O2 scavenged antioxidant activity (90.98–92.08%) was noticeable in case of 4a and 4f; showing significant antioxidant potential comparable with the standard ascorbic acid (95.3%). In vitro antifungal activity of synthesized compounds against fungal species Candida albicance, Aspergillus niger and Aspergillus flavus was found to be moderate to good as compared with the standard fluconazole and MIC values were found in the range of 3.12–25 μg/mL. Molecular docking studies revealed that the compounds 4a, 4b and 4c have a potential to become lead molecules in drug discovery process. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized antioxidants which expressed good oral drug like behaviour and non-toxic nature.  相似文献   

12.
A series of 20 hispolons/dihydrohispolons were synthesized and characterized by spectral data. These compounds were subjected to in vitro antitubercular activity screening against Mycobacterium tuberculosis (H37Rv) strain. The synthesized compounds showed varied antitubercular activity ranging from 100 to 1.6 μg/mL. Among the screened compounds, four compounds (H1, H2, H3 and H15) have shown moderate activity with MIC 25 μg/mL. Potent activities were observed for the dihydrohispolon derivative H14 (MIC 1.6 μg/mL) followed by H13 (6.25 μg/mL) and H17 (12.5 μg/mL), H19 (3.125 μg/ML). Docking simulations gave good insights on the possible interactions between the tested compounds and β-keto acyl synthase enzyme (mtbFabH). Drug-inhibitor combination studies showed no synergism with the drugs targeting mycolic acid biosynthesis (isoniazid, ethambutol and thiolactomycin, a specific inhibitor of KAS-B enzyme) but showed significant synergism with other drugs including rifampicin and ciprofloxacin ascertaining the drug target for hispolons as inhibition of mycolic acid biosynthesis, probably via mtbFabH.  相似文献   

13.
Three series of azole piperazine derivatives that mimic dicyclotyrosine (cYY), the natural substrate of the essential Mycobacterium tuberculosis cytochrome P450 CYP121A1, were prepared and evaluated for binding affinity and inhibitory activity (MIC) against M. tuberculosis. Series A replaces one phenol group of cYY with a C3-imidazole moiety, series B includes a keto group on the hydrocarbon chain preceding the series A imidazole, whilst series C explores replacing the keto group of the piperidone ring of cYY with a CH2-imidazole or CH2-triazole moiety to enhance binding interaction with the heme of CYP121A1. The series displayed moderate to weak type II binding affinity for CYP121A1, with the exception of series B 10a, which displayed mixed type I binding. Of the three series, series C imidazole derivatives showed the best, although modest, inhibitory activity against M. tuberculosis (17d MIC?=?12.5?μg/mL, 17a 50?μg/mL). Crystal structures were determined for CYP121A1 bound to series A compounds 6a and 6b that show the imidazole groups positioned directly above the haem iron with binding between the haem iron and imidazole nitrogen of both compounds at a distance of 2.2?Å. A model generated from a 1.5?Å crystal structure of CYP121A1 in complex with compound 10a showed different binding modes in agreement with the heterogeneous binding observed. Although the crystal structures of 6a and 6b would indicate binding with CYP121A1, the binding assays themselves did not allow confirmation of CYP121A1 as the target.  相似文献   

14.
A series of pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety were synthesized, characterised, and evaluated for their activity against tobacco mosaic virus (TMV). Biological assays indicated that several of the derivatives exhibited significant activity against TMV. In particularly, compounds 5y and 5aa displayed excellent inactivating activity against TMV, with half maximal effective concentration (EC50) values of 70.3 and 53.65?μg/mL, respectively, which were much better than that of ribavirin (150.45?μg/mL), and 5aa was superior to ningnanmycin (EC50?=?55.35?μg/mL). Interactions of compounds 5y and 5aa with TMV coat protein (TMV-CP) were investigated using microscale thermophoresis and molecular docking. Compounds 5y and 5aa displayed strong binding capability to TMV-CP with dissociation constant (Kd) values of 22.6 and 9.8?μM, respectively. These findings indicate that pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base may be potential antiviral agents.  相似文献   

15.
A series of novel pyraclostrobin derivatives were designed and prepared as antifungal agents. Their antifungal activities were tested in vitro with five important phytopathogenic fungi, namely, Batrylis cinerea, Phytophthora capsici, Fusarium sulphureum, Gloeosporium pestis and Sclerotinia sclerotiorum using the mycelium growth inhibition method. Among these compounds, 5s displayed IC50 value of 0.57?μg/mL against Batrylis cinerea and 5k-II displayed IC50 value of 0.43?μg/mL against Sclerotinia sclerotiorum, which were close to that of the positive control pyraclostrobin (0.18?μg/mL and 0.15?μg/mL). Other compounds 5f, 5k-II, 5j, 5m and 5s also exhibited strong antifungal activity. Further enzymatic assay demonstrated compound 5s inhibited porcine bc1 complex with IC50 value of 0.95?μM. The statistical results from an integrated computational pipeline demonstrated the predicted total binding free energy for compound 5s is the highest. Consequently, compound 5s with the biphenyl-4-methoxyl side chain could serve as a new motif as inhibitors of bc1 complex and deserve to be further investigated.  相似文献   

16.
Candida albicans is a major invasive pathogen, and the development of strains resistant to conventional antifungal agents has been reported in recent years. We evaluated the antifungal activity of 44 compounds against Candida strains. Magnoflorine showed the highest growth inhibitory activity of the tested Candida strains, with a minimum inhibitory concentration (MIC) of 50 μg/mL based on microdilution antifungal susceptibility testing. Disk diffusion assay confirmed the antifungal activity of magnoflorine and revealed that this activity was stable over 3 days compared to those of berberine and cinnamaldehyde. Cytotoxicity testing showed that magnoflorine could potentially be used in a clinical setting because it didn’t have any toxicity to HaCaT cells even in 200 μg/mL of treatment. Magnoflorine at 50 μg/mL inhibited 55.91?±?7.17% of alpha-glucosidase activity which is required for normal cell wall composition and virulence of Candida albicans. Magnoflorine also reduced the formation of C. albicans’ biofilm. Combined treatment with magnoflorine and miconazole decreased the amount of miconazole required to kill various Candida albicans. Therefore, magnoflorine is a good candidate lead compound for novel antifungal agents.  相似文献   

17.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

18.
Novel biaryloxazolidinone derivatives containing a rhodanine or thiohydantoin moiety were designed, synthesized and evaluated for their antibacterial activity. The key compounds 7 and 9 were synthesized by the knoevenagel condensation of intermediate aldehyde 5 with rhodanine derivatives 6a?6b. The preliminary study showed that compounds 7, 9 and 10e exhibited potent antibacterial activity with MIC values of 0.125?µg/mL against S. aureus, MRSA, MSSA, LREF and VRE pathogens, using linezolid and radezolid as the positive controls. The most promising compound 10e exhibited potent antibacterial activity against tested clinical isolates of MRSA, MSSA, VRE and LREF with MIC values in the range of 0.125–0.5?µg/mL, and the potency of 10e against clinical isolates of LREF was 64-fold higher than that of linezolid. Moreover, compound 10e was non-cytotoxic with an IC50 value of 91.04?μM against HepG2 cell. Together, compound 10e might serve as a novel antibacterial agent for further investigation.  相似文献   

19.
A new sequence of pyrazole derivatives (16) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, 1H NMR, 13C NMR, Mass and elemental analysis. Synthesized compounds (16) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (16) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents.  相似文献   

20.
A series of new N-substituted 1H-dibenzo[a,c]carbazole derivatives were synthesized from dehydroabietic acid, and their structures were characterized by IR, 1H NMR and HRMS spectral data. All compounds were evaluated for their antibacterial and antifungal activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens) and three fungi (Candida albicans, Candida tropicalis and Aspergillus niger) by serial dilution technique. Some of the synthesized compounds displayed pronounced antimicrobial activity against tested strains with low MIC values ranging from 0.9 to 15.6 μg/ml. Among them, compounds 6j and 6r exhibited potent inhibitory activity comparable to reference drugs amikacin and ketoconazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号