首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein farnesyltransferase (FTase) inhibitors, generally called "FTIs," block the farnesylation of prelamin A, inhibiting the biogenesis of mature lamin A and leading to an accumulation of prelamin A within cells. A recent report found that a GGTI, an inhibitor of protein geranylgeranyltransferase-I (GGTase-I), caused an exaggerated accumulation of prelamin A in the presence of low amounts of an FTI. This finding was interpreted as indicating that prelamin A can be alternately prenylated by GGTase-I and that inhibiting both protein prenyltransferases leads to more prelamin A accumulation than blocking FTase alone. Here, we tested an alternative hypothesis-GGTIs are not specific for GGTase-I, and they lead to prelamin A accumulation by inhibiting ZMPSTE24 (a zinc metalloprotease that converts farnesyl-prelamin A to mature lamin A). In our studies, commonly used GGTIs caused prelamin A accumulation in human fibroblasts, but the prelamin A in GGTI-treated cells exhibited a more rapid electrophoretic mobility than prelamin A from FTI-treated cells. The latter finding suggested that the prelamin A in GGTI-treated cells might be farnesylated (which would be consistent with the notion that GGTIs inhibit ZMPSTE24). Indeed, metabolic labeling studies revealed that the prelamin A in GGTI-treated fibroblasts is farnesylated. Moreover, biochemical assays of ZMPSTE24 activity showed that ZMPSTE24 is potently inhibited by a GGTI. Our studies show that GGTIs inhibit ZMPSTE24, leading to an accumulation of farnesyl-prelamin A. Thus, caution is required when interpreting the effects of GGTIs on prelamin A processing.  相似文献   

3.
4.
Urinary incontinence (UI) is known as a distressing condition particularly among older adults, and negatively associated with health-related quality of life in both males and females. Prelamin A accumulation has been found in all progeroid laminopathies and is obviously linked to cell and organism aging. Therefore, this study was expected to investigate the effect of prelamin A on detrusor on UI. Prelamin A expression in clinical and animal samples was detected. To investigate the degree of prelamin A accumulation and detrusor calcification/aging, the detrusor cells were subcultured separately into low and high passage. The low-passage subculture cells were treated with transfection of overexpressed prelamin A plasmid, and transfection of overexpressed prelamin A plasmid and application of farnesyl transferase inhibitor (FTIs) H-9279, respectively. Zmpste24, Icmt and lamin A/C expression were detected to explore how prelamin A affected detrusor calcification/aging. Prelamin A was overexpressed in aged detrusor cells, indicating prelamin A expression was positively related to the age of subjects. The degree of prelamin A accumulation and detrusor calcification/aging was higher in aged rats and high passage subculture cells. Zmpste24, Icmt and lamin A/C were poorly expressed in cells transfected with overexpressed prelamin A, as well as cell proliferation activity decreased and calcium deposition and apoptotic rate increased. Furthermore, we also found that the effect of overexpressed prelamin A was lost when cells were treated with H-9279. These findings provide evidence that prelamin A overexpression impairs degradation of its farnesylated form, thus causing prelamin A accumulation which induces detrusor calcification/aging in UI.  相似文献   

5.
Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.  相似文献   

6.
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.  相似文献   

7.
Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation.In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects.  相似文献   

8.
Prelamin A is farnesylated and methylated on the cysteine residue of a carboxyl-terminal CaaX motif. In the nucleus, prelamin A is processed to lamin A by endoproteolytic removal of the final 18 amino acids, including the farnesylated cysteine residue. Using the yeast two-hybrid assay, we isolated a novel human protein, Narf, that binds the carboxyl-terminal tail of prelamin A. Narf has limited homology to iron-only bacterial hydrogenases and eukaryotic proteins of unknown function. Narf is encoded by a 2-kilobase mRNA expressed in all human cell lines and tissues examined. The protein is detected in the nuclear fraction of HeLa cell lysates on Western blots and can be extracted from nuclear envelopes with 0.5 M NaCl. When a FLAG epitope-tagged Narf is expressed in HeLa cells, it is exclusively nuclear and partially co-localizes with the nuclear lamina. The farnesylation status of prelamin A determines its ability to bind to Narf. Inhibition of farnesyltransferase and mutation or deletion of the CaaX motif from the prelamin A tail domain inhibits Narf binding in yeast two-hybrid and in vitro binding assays. The prenyl-dependent binding of Narf to prelamin A is an important first step in understanding the functional significance of the lamin A precursor.  相似文献   

9.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by a LMNA mutation that leads to the synthesis of a mutant prelamin A that is farnesylated but cannot be further processed to mature lamin A. A more severe progeroid disorder, restrictive dermopathy (RD), is caused by the loss of the prelamin A-processing enzyme, ZMPSTE24. The absence of ZMPSTE24 prevents the endoproteolytic processing of farnesyl-prelamin A to mature lamin A and leads to the accumulation of farnesyl-prelamin A. In both HGPS and RD, the farnesyl-prelamin A is targeted to the nuclear envelope, where it interferes with the integrity of the nuclear envelope and causes misshapen cell nuclei. Recent studies have shown that the frequency of misshapen nuclei can be reduced by treating cells with a farnesyltransferase inhibitor (FTI). Also, administering an FTI to mouse models of HGPS and RD ameliorates the phenotypes of progeria. These studies have prompted interest in testing the efficacy of FTIs in children with HGPS.  相似文献   

10.
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.  相似文献   

11.
Osteoclast differentiation is a complex process involving cytoskeleton and nuclear reorganization. Osteoclasts regulate bone homeostasis and have a key role in bone degenerative processes. Osteolysis and osteoporosis characterize a subset of laminopathies, inherited disorders due to defects in lamin A/C. Laminopathies featuring bone resorption are characterized, at the molecular level, by anomalous accumulation of the unprocessed lamin A precursor, called prelamin A. To obtain a suitable cell model to study prelamin A effects on osteoclasts, prelamin A processing inhibitors FTI-277 or AFCMe were applied to peripheral blood monocytes induced to differentiate towards the osteoclastic lineage. Previous studies have shown that treatment with FTI-277 causes accumulation of non-farnesylated prelamin A, while AFCMe inhibition of prelamin A maturation causes accumulation of a farnesylated form. We demonstrate that monocytes subjected to FTI-277 treatment and mostly those subjected to AFCMe administration, differentiate towards the osteoclastic lineage more efficiently than untreated monocytes, in terms of number of multinucleated giant cells, mRNA expression of osteoclast-related genes and TRACP 5b activity. On the other hand, the bone resorption activity of osteoclasts obtained in the presence of high prelamin A levels is lower with respect to control osteoclasts. This finding may help the understanding of the osteolytic and osteoporotic processes that characterize progeroid laminopathies.  相似文献   

12.
Prelamin A is the precursor protein of lamin A, a major constituent of the nuclear lamina in higher eukaryotes. Increasing attention to prelamin A processing and function has been given after the discovery, from 2002 to 2004, of diseases caused by prelamin A accumulation. These diseases, belonging to the group of laminopathies and mostly featuring LMNA mutations, are characterized, at the clinical level, by different degrees of accelerated aging, and adipose tissue, skin and bone abnormalities. The outcome of studies conducted in the last few years consists of three major findings. First, prelamin A is processed at different rates under physiological conditions depending on the differentiation state of the cell. This means that, for instance, in muscle cells, prelamin A itself plays a biological role, besides production of mature lamin A. Secondly, prelamin A post-translational modifications give rise to different processing intermediates, which elicit different effects in the nucleus, mostly by modification of the chromatin arrangement. Thirdly, there is a threshold of toxicity, especially of the farnesylated form of prelamin A, whose accumulation is obviously linked to cell and organism senescence. The present review is focused on prelamin A-mediated nuclear envelope modifications that are upstream of chromatin dynamics and gene expression mechanisms regulated by the lamin A precursor.  相似文献   

13.
HIV protease inhibitors (HIV-PIs) are key components of highly active antiretroviral therapy, but they have been associated with adverse side effects, including partial lipodystrophy and metabolic syndrome. We recently demonstrated that a commonly used HIV-PI, lopinavir, inhibits ZMPSTE24, thereby blocking lamin A biogenesis and leading to an accumulation of prelamin A. ZMPSTE24 deficiency in humans causes an accumulation of prelamin A and leads to lipodystrophy and other disease phenotypes. Thus, an accumulation of prelamin A in the setting of HIV-PIs represents a plausible mechanism for some drug side effects. Here we show, with metabolic labeling studies, that lopinavir leads to the accumulation of the farnesylated form of prelamin A. We also tested whether a new and chemically distinct HIV-PI, darunavir, inhibits ZMPSTE24. We found that darunavir does not inhibit the biochemical activity of ZMPSTE24, nor does it lead to an accumulation of farnesyl-prelamin A in cells. This property of darunavir is potentially attractive. However, all HIV-PIs, including darunavir, are generally administered with ritonavir, an HIV-PI that is used to block the metabolism of other HIV-PIs. Ritonavir, like lopinavir, inhibits ZMPSTE24 and leads to an accumulation of prelamin A.  相似文献   

14.
Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.  相似文献   

15.
Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.  相似文献   

16.
编码核层蛋白A(lamin A)的LMNA基因突变导致法尼基化的核层蛋白A前体(prelamin A)不能被进一步加工成成熟的核层蛋白A,从而导致一种Hutchinson-Gilford早老症综合征(Hutchinson-Gilford progeria syndrome,HGPS)。一种更严重的早老症——限制性皮肤病(restrictive dermopathy,RD),是由于缺失核层蛋白A前体加工过程中的剪切酶ZMPSTE24引起的。ZMPSTE24的缺失阻止了法尼基化的核层蛋白A前体不能正常加工成为成熟的核层蛋白A,同时导致法尼基化的核层蛋白A前体的堆积。在HGPS和RD病人的成纤维细胞中,发现法尼基化的核层蛋白A前体都定位在核膜,从而影响细胞核膜的完整性,并导致细胞核形的异常,进而导致衰老。最近研究表明经过法尼基酰转移酶抑制剂(farnesyltransferase inhibitor,FTI)处理后的细胞的核形异常减少。同时,FTI能够改善HGPS和RD小鼠的早老症状。本文就核层蛋白A前体的法尼基化对衰老的影响有关研究进展作一综述。  相似文献   

17.
Mature lamin A is formed after post-translational processing of prelamin A, which includes prenylation and carboxymethylation of cysteine 661 in the CaaX motif, followed by two proteolytic cleavages by zinc metalloprotease (ZMPSTE24). We expressed several prelamin A mutants, C661S (defective in prenylation), Y646F (designed to undergo prenylation but not second proteolytic cleavage), double mutant, Y646F/C661S and Y646X (mature lamin A), and the wild-type construct in human embryonic kidney (HEK-293) cells. Only the Y646F mutant co-localized with nuclear pore complex proteins, including Nup53 and Nup98, whereas the other mutants localized to the nuclear envelope rim. The cells expressing Y646F mutant also revealed abnormal nuclear morphology which was partially rescued with the farnesyl transferase inhibitors. These data suggest that the unprenylated prelamin A is not toxic to the cells. The toxicity of prenylated prelamin A may be due to its association and/or accumulation at the nuclear pore complex which could be partially reversed by farnesyl transferase inhibitors.  相似文献   

18.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

19.
Several progeroid disorders are caused by deficiency in the endoprotease ZMPSTE24 which leads to accumulation of prelamin A at the nuclear envelope. ZMPSTE24 cleaves prelamin A twice: at the third carboxyl‐terminal amino acid following farnesylation of a –CSIM motif; and 15 residues upstream to produce mature lamin A. The carboxyl‐terminal cleavage can also be performed by RAS‐converting enzyme 1 (RCE1) but little is known about the importance of this cleavage for the ability of prelamin A to cause disease. Here, we found that knockout of RCE1 delayed senescence and increased proliferation of ZMPSTE24‐deficient fibroblasts from a patient with non‐classical Hutchinson‐Gilford progeria syndrome (HGPS), but did not influence proliferation of classical LMNA‐mutant HGPS cells. Knockout of Rce1 in Zmpste24‐deficient mice at postnatal week 4–5 increased body weight and doubled the median survival time. The absence of Rce1 in Zmpste24‐deficient fibroblasts did not influence nuclear shape but reduced an interaction between prelamin A and AKT which activated AKT‐mTOR signaling and was required for the increased proliferation. Prelamin A levels increased in Rce1‐deficient cells due to a slower turnover rate but its localization at the nuclear rim was unaffected. These results strengthen the idea that the presence of misshapen nuclei does not prevent phenotype improvement and suggest that targeting RCE1 might be useful for treating the rare progeroid disorders associated with ZMPSTE24 deficiency.  相似文献   

20.
Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-l-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2 alpha were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号