首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At present, the remediation for organic pollutants and heavy metals co-contaminated soils is a challenge which needs to be broken through. In this study, alkyl polyglucoside (APG), citric acid (CA), and nitrilotriacetic acid (NTA) were chosen to enhance the phytoremediation of pyrene and Pb co-contaminated soils by perennial ryegrass. Through the comparison of the results with different applications, it could be found that the application of NTA was beneficial to the growth of perennial ryegrass, the underground and aboveground biomass were increased by 172.9–236.1% and 61.9–142.8%, respectively, meanwhile, photosynthetic activity of perennial ryegrass was affected positively. More importantly, the combined application of APG and NTA maximally promoted the accumulation and translocation of Pb (BF/TF, 0.44/0.61) and dissipation of pyrene (71.6%). These results indicated that the combined application of APG and NTA could be promising for future practical application of phytoremediation. However, the optimal dosage ratio of APG and NTA for phytoremediation needs to be further researched.  相似文献   

2.
A Gram-negative bacterium was isolated from river sediment which was able to grow with nitrilotriacetic acid as a combined carbon, nitrogen and energy source in the absence of molecular oxygen using nitrate as the terminal electron acceptor. Batch growth parameters and mass balances are reported for growth under both aerobic and denitrifying conditions.The strain was characterized with respect to its substrate spectrum and other physiological properties. This denitrifying isolate is serologically unrelated to the comprehensively described Gram-negative obligately aerobic NTA-degrading bacteria all of which belong to the -subclass of Proteobacteria. Chemotaxonomic characterization, which revealed the presence of spermidine as the main polyamine and ubiquinone Q-8, excludes the new isolate from the phylogenetically redefined genus Pseudomonas and indicates a possible location within the -subclass of Proteobacteria close to, but separate from the genus Xanthomonas.  相似文献   

3.
We describe a methodology for quick development of fluorescent probes with the desired potency for the target of interest by using a method of parallel synthesis, termed as Parallel Fluorescent Probe Synthesis (Parallel-FPS). BODIPY FL propionic acid 1 is a widely used fluorophore, but it is difficult to prepare a large amount of 1, which hinders its use in parallel synthesis. Optimization of a synthetic scheme enabled us to obtain 50 g of 1 in one batch. With this large quantity of 1 in hand, we performed Parallel-FPS of BODIPY FL-labeled ligands for estrogen related receptor-α (ERRα). An initial trial of the parallel synthesis with various linkers provided a potent ligand for ERRα (Reporter IC50 = 80 nM), demonstrating the usefulness of Parallel-FPS.  相似文献   

4.
Glycero- and sphingolipids have been shown to be building blocks of membranes and lipoproteins, metabolites and important intermediaries in the signalling cascades involved in stress responses, proliferation of cells and also apoptosis. Investigations into the exact functions of these lipids have found that they are fundamentally more important than previously thought and that they are intricately involved in the processes of many significant metabolic pathways and diseases. Investigation of these functions requires the detection of the lipids in their natural environment within membranes. To this end, fluorescent labelling has become one of the preferred means in which to study these essential components due to the relative ease of detection. This review will look at the novel compounds that have been synthesised recently through various methodologies including classical lipid synthesis as well as the innovative application of organometallic chemistry. This field has expanded with the advancements in fluorescence detection and these lipids are being used as specific probes for an extensive range of applications in order to ascertain the mechanisms and signalling capabilities of this very important class of biological compounds.  相似文献   

5.
Chymotrypsin catalyses a condensation reaction between 1-methyl-3,4-dihydro-beta-carboline-3-methyl carboxylate and amino acid amides or peptides, yielding fluorescent derivatives. During the peptide bond formation, the enzyme ensures the reaction's steric control of both carboxyl and amino components.  相似文献   

6.
The extensive use of phosphate-based detergents and agricultural fertilizers is one of the main causes of the world-wide eutrophication of rivers and lakes. To ameliorate such problems partial or total substitution of phosphates in laundry detergents by synthetic, non-phosphorus containing complexing agents is practiced in several countries. The physiological, biochemical and ecological aspects of the microbial degradation of the complexing agents most frequently used, such as polyphosphates, aminopolycarboxylates (especially of nitrilotriacetic acid), and phosphonates are reviewed.Abbreviations AODC Acridine orange direct counts - ATMP Aminotrimethylphosphonate - DTPA Diethylenetriaminepentaacetate - DTPMP Diethylenetriaminepentamethylphosphonate - EDTA Ethylenediaminetetraacetate - EDTMP Ethylenediaminetetramethylphosphonate - ED3A Ethylenediaminetriacetate - HEDP Hydroxyethylidenediphosphonate - HEDTA Hydroxyethylethylenediaminetriacetate - IDA Iminodiacetate - IFT Immunofluorescence test - MW Molecular weight - NTA Nitrilotriacetate - PA Polyacrylate - PHC Polyhydroxycarboxylate - PMS Phenazine methosulfate - SDS-PAGE Sodium dodecylsulfate polyacrylamide gel electrophoresis - SPP Tetrasodiumpyrophosphate - STP Pentasodiumtriphosphate  相似文献   

7.
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1 × MIC and 4 × MIC.  相似文献   

8.
Hepsin is a type II serine protease that is highly expressed in neoplastic prostate. It is an attractive biomarker for imaging metastatic prostate cancer because of its overexpression in advanced prostate cancer and the location of its active site on the cell surface. We designed and synthesized novel hepsin-targeted imaging probes by conjugating the hepsin-binding ligand with near-infrared (NIR) optical dyes. The Leu-Arg dipeptides, attached to BODIPY or SulfoCy7, exhibited strong hepsin-inhibitory activities with Ki values of 21 and 22 nM, respectively. Compound 2 showed selective uptake and retention in hepsin-overexpressing cells. This is the first report of hepsin-targeted optical probes with strong binding affinities and high selectivity over matriptase. Compound 2 has the potential to be used for developing hepsin-based imaging probes and be as a prototype molecule in the design of new hepsin inhibitors.  相似文献   

9.
The designing and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of alanine substituted rhodamine B derivative 3 having specific binding affinity toward Fe3+ with micro molar concentration level. Through fluorescence titration at 599 nm, we were confirmed that ligand 3 exhibited ratiometric fluorescence response with remarkable enhancement in emission intensity by complexation between 3 and Fe3+ while it appeared no emission in case of the competitive ions (Sc3+, Yb3+, In3+, Ce3+, Sm3+, Cr3+, Sn2+, Pb2+, Ni2+, Co2+, Cu2+, Ba2+, Ca2+, Mg2+, Ag+, Cs+, Cu+, K+) in aqueous/methanol (60:40, v/v) at neutral pH. However, the fluorescence as well as colorimetric response of ligand–iron complex solution was quenched by addition of KCN which snatches the Fe3+ from complex and turn off the sensor confirming the recognition process was reversible. Furthermore, bioimaging studies against L-929 cells (mouse fibroblast cells) and BHK-21 (hamster kidney fibroblast), through confocal fluorescence microscopic experiment indicated that ligand showed good permeability and minimum toxicity against the tested cell lines.  相似文献   

10.
Prostate-specific membrane antigen (PSMA) is a zinc-bound metalloprotease which is highly expressed in metastatic prostate cancer. It has been considered an excellent target protein for prostate cancer imaging and targeted therapy because it is a membrane protein and its active site is located in the extracellular region. We successfully synthesized and evaluated a novel PSMA ligand conjugated with BODIPY650/665. Compound 1 showed strong PSMA-inhibitory activity and selective uptake into PSMA-expressing tumors. Compound 1 has the potential to be utilized as a near infrared (NIR) optical imaging probe targeting PSMA-expressing cancers.  相似文献   

11.
A series of structurally new diheteroaryl thioether analogs was designed, prepared and screened toward MGC-803, MKN-45, EC-109 and H1650. Most of the target compounds displayed moderate to potent antiproliferative activities. Among them, compound 5 showed the best antiproliferative activity against the tested cell lines with the half maximal inhibitory concentration (IC50) values below 10 μM. In addition, flow cytometry analysis showed that compound 5 increased Bax expression, down-regulated expression of Bcl-2, cleaved caspases-3/9, finally inducing apoptosis of MKN-45 cells as well as arrested the cell cycle at G2/M phase. This study suggests that the diheteroaryl thioethers are a class of emerging chemotypes for developing antitumor agents or biological probes, and compound 5 could serve as a good starting point to design new apoptosis inducers.  相似文献   

12.
We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50?=?0.039?nM vs. 0.069?nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50?=?0.25?nM and 0.26?nM vs. 0.11?nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d15f and oxadiazole compounds 24a24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50?=?0.14?μM and 0.05?μM vs. 8.98?μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.  相似文献   

13.
The novel hydroxyanthraquinone derivatives containing nitrogen-mustard and thiophene group were designed to covalently bind to topoisomerase II, and their structures were confirmed by nuclear magnetic resonance and high resolution mass spectrometer technologies in this article. The in vitro cytotoxicity against different cancer cell lines and one normal liver cell line (L02) was evaluated by MTT assay. Compound A1 was the most potent anti-proliferative agent against the human liver cancer HepG-2 cells (IC50?=?12.5?μM), and there is no obvious growth inhibitory effect on normal liver tissue L02 cells. The good cytotoxicity and selectivity of compound A1 suggest that it could be a promising lead for further optimization. The mechanisms of action about compound A1 and A4 were further investigated through analysis of cell apoptosis. Confocal microscopy tracks the location of compound A1 in the cell, which could enter the cytoplasm and nucleus, and induce severe deformation of the nucleus. The docking study demonstrated that A1 could interact with the catalytic active site in topoisomerase II.  相似文献   

14.
A quinoxaline‐functionalized styryl–BODIPY derivative (S1) was synthesized by microwave‐assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro‐encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1–BSA complex was characterized systematically using ultraviolet (UV)–visible absorption, fluorescence emission, kinetics, circular dichroism and time‐resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1–BSA complex could be used as a new biomaterial for fluorescence‐based high‐throughput assay for kinase enzymes.  相似文献   

15.
Pin1 (Protein interaction with never in mitosis A1) is a validated molecular target for anticancer drug discovery. Herein, we reported the design, synthesis, and structure-activity relationship study of novel ring A modified AKBA (3-acetyl-11-keto-boswellic acid) derivatives as Pin1 inhibitors. Most compounds showed superior Pin1 inhibitory activities to AKBA. One of the most promising compounds, 10a, potently inhibited Pin1 with IC50 value of 0.46?μM, while it displayed excellent anti-proliferative effect against prostate cancer cells PC-3 with GI50 value of 1.82?μM. Structure-activity relationship indicated that reasonable structural modifications in ring A had significant impact on improving activity. Further mechanism research revealed that 10a decreased the level of Cyclin D1 and caused cell cycle arrest at G0/G1 phase in PC-3 cancer cells. Thus, compound 10a may serve as potential anti-prostate cancer agent for further investigation through Pin1 inhibition.  相似文献   

16.
Oleanolic acid (OA) and glycyrrhetinic acid (GA) are natural products with anticancer effects. Cinnamic acid (CA) and its derivatives also exhibited certain anticancer activity. In order to improve the anticancer activity of OA and GA, we designed and synthesized a series of novel OA-CA ester derivatives and GA-CA ester derivatives by using molecular hybridization approach. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to assess their in vitro cytotoxicity on three cell lines (HeLa (cervical cancer), MCF-7 (breast cancer) and L-O2 (a normal hepatic cell)). Among the evaluated compounds, 3o presented the strongest selective cytotoxicity on HeLa cells (IC50 = 1.35 μM) and showed no inhibitory activity against MCF-7 cells (IC50 > 100 μM) and L-O2 cells (IC50 > 100 μM), and 3e presented the strongest selective inhibition of the MCF-7 cells (IC50 = 1.79 μM). What’s more, compound 2d also showed very strong selective inhibitory activity against HeLa cells (IC50 = 1.55 μM). The further research using Hoechst 33342, AO/EB dual-staining, flow cytometric analysis and DCFH-DA fluorescent dye staining assay presented that 2d and 3o could induce HeLa cells apoptosis and autophagy.  相似文献   

17.
A series of twenty-one 3,4-dihydropyrimidine derivatives bearing the heterocyclic 1,3-benzodioxole at position 4 in addition to different substituents at positions 2, 3 and 5 were designed and synthesized as monastrol analogs. The novel synthesized compounds were screened for their cytotoxic activity towards 60 cancer cell lines according to NCI (USA) protocol. Compounds 10b and 15 showed the best antitumor activity against most cell lines. Compound 15 was subsequently tested in 5-doses mode and displayed high selectivity towards CNS, prostate and leukemia subpanel with selectivity ratios of 22.30, 15.38 and 12.56, respectively at GI50 level. The IC50 of compounds 9d, 10b, 12, 15 and 16 against kinesin enzyme were 3.86 ± 0.12, 10.70 ± 0.35, 3.95 ± 0.12, 4.36 ± 0.14, and 14.07 ± 0.45 μM respectively, while the prototype compound, monastrol, reported IC50 value of 20 ± 0.42 μM. The safest compound among test compounds against normal cell line (HEK 293) is 10b with IC50 value of 62.02 ± 2.42 µM/ml in comparison to doxorubicin (IC50 = 11.34 ± 0.44 µM/ml). Cell cycle analysis of SNB-75 cells treated with compound 15 showed cell cycle arrest at G2/M phase. Further, the assay of levels of active caspase-3 and caspase-9 was investigated. Moreover, Molecular docking of compounds, 9d, 10b, 12, 15, 16, monastrol and mon-97 was performed to study the interaction between inhibitors and the kinesin spindle protein allosteric binding site.  相似文献   

18.
A novel, real-time, homogeneous fluorogenic lipoprotein lipase (LPL) assay was developed using a commercially available substrate, the EnzChek lipase substrate, which is solubilized in Zwittergent. The triglyceride analog substrate does not fluoresce, owing to apposition of fluorescent and fluorescent quenching groups at the sn-1 and sn-2 positions, respectively, fluorescence becoming unquenched upon release of the sn-1 BODIPY FA derivative following hydrolysis. Increase in fluorescence intensity at 37°C was proportional to LPL concentration. The assay was more sensitive than a similar assay using 1,2-O-dilauryl-rac-glycero-3-glutaric acid-(6-methylresorufin ester) and was validated in biological samples, including determination of LPL-specific activity in postheparin mouse plasma. The simplicity and reproducibility of the assay make it ideal for in vitro, high-throughput screening for inhibitors and activators of LPL, thus expediting discovery of drugs of potential clinical value.  相似文献   

19.
As inexpensive and readily available fluorophores for 3′ and 5′ end labeling of RNA molecules, symmetrical BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives having a primary amino group were designed, and their facile synthetic route was established. Novel BODIPY derivatives exhibited photophysical properties comparable to commercially available BODIPY FL EDA (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl ethylenediamine). To confirm utility of new derivatives, specific labeling of the 3′ and 5′ ends of in vitro transcribed RNAs was carried out. Furthermore, the 3′ end of the 5′ fragment of the bimolecular Tetrahymena ribozyme was labeled, and its catalytic activity was investigated.  相似文献   

20.
Using matrine (1) as the lead compound, a series of new 14-(N-substituted-2-pyrrolemethylene) matrine and 14-(N-substituted-indolemethylene) matrine derivatives was designed and synthesized for their potential application as anticancer agents. The structure of these compounds was characterized by 1H NMR, 13C NMR and ESI-MS spectral analyses. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (SMMC-7721, A549 and CNE2). The results revealed that compound A6 and B21 displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05?μM, which showed better activity than the parent compound (Matrine) and positive control Cisplatin. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound A6 and B21 could significantly induce the apoptosis of SMMC-7721 and CNE2 cells in a dose-dependent manner. The cell cycle analysis also revealed that compound A6 could cause cell cycle arrest of SMMC-7721 and CNE2 cells at G2/M phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号