首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
麦角硫因(ergothioneine,ERG)是存在于自然界的一种含硫氨基酸,因其具有较强的清除自由基和抗衰老能力且天然安全无毒,近年来在食品、医药、化妆品等领域广泛应用。麦角硫因作为一种天然高效的抗氧化剂,在与氧化应激相关的疾病预防和治疗中发挥着重要的作用。本文综述了麦角硫因的结构与性质、抗氧化特性,干预氧化应激相关疾病的作用与机制等研究进展,为麦角硫因多元应用提供参考。  相似文献   

2.
麦角硫因是一种独特的细胞生理保护剂,在食品、饮料、化妆品和医药等行业具有广阔的应用前景.生物合成法是麦角硫因制备方法的研究热点.文中介绍了近年来在麦角硫因生物合成途径的鉴定、生物合成关键酶的挖掘、天然可食用菌种以及高产工程菌的开发等方面取得的新进展,以期从分子层面深入认识麦角硫因生物合成的调控机制,进而利用发酵工程、代...  相似文献   

3.
麦角硫因(ergothioneine,ERG)是一种天然的抗氧化剂,广泛应用于化妆品、食品以及医药领域.相比于传统植物提取和化学合成方法,微生物发酵合成麦角硫因具有周期短、成本低等优点,因而受到广泛关注.为构建高产麦角硫因的大肠杆菌工程菌株,本研究以大肠杆菌(Escherichia coli) BL21 (DE3)为出...  相似文献   

4.
甾类化合物广泛存在于自然界中,是一类很重要的天然产物。在菌物中,甾类化合物不仅种类多样,含量也相当丰富,尤其是由28个碳原子组成的麦角甾类化合物更具有代表性,是菌物的特征性成分。文中对国内外文献报道的菌物中麦角甾类化合物的种类进行了归纳总结。  相似文献   

5.
(一)麦角是一种妇产科的重要药用菌。麦角制剂可作收敛子宫和子宫出血或内部器官出血的止血剂。分娩后适当应用不但可以防止产后失血,而且可以促进子宫复位,减少产褥期细菌感染的机会。因此在今天人民政府大力推行妇婴卫生的时候,麦角的供应问题就愈加重要了。若仍靠国外输入,因价格昂贵供应有限,很难广泛地应用到广大劳动人民身上。所以目前国家对于麦角的自给自足问题,成了一个急待解决的问题。同时麦角也是麦类,尤其  相似文献   

6.
无机硫化合物的微生物氧化   总被引:4,自引:0,他引:4  
徐海岩  颜望明   《微生物学通报》1994,21(3):167-172
无机硫化合物的微生物氧化徐海岩,颜望明(山东大学微生物研究所,济南250100)硫是自然界存在的重要元素之一,也是构成生物有机体必不可少的一种元素。自然界硫的转化主要是在微生物直接或间接参与下完成的。在这些微生物中,有异养菌,也有自养菌。自养菌主要是...  相似文献   

7.
硫细菌大多是一类能运动的小杆菌,常见于含硫化氢,硫磺的土壤、江河、湖海、温泉或硫矿,铜矿、铁矿的积水坑中。硫细菌在自然界硫的转化和细菌冶金方面都有重要作用,主要分为:  相似文献   

8.
硫氧化细菌的种类及硫氧化途径的研究进展   总被引:3,自引:0,他引:3  
硫,作为生物必需的大量营养元素之一,参与了细胞的能量代谢与蛋白质、维生素和抗生素等物质代谢。自然界中,硫以多种化学形态存在,包括单质硫、还原性硫化物、硫酸盐和含硫有机物。硫氧化是硫元素生物地球化学循环的重要组成部分,通常是指单质硫或还原性硫化物被微生物氧化的过程。硫氧化细菌种类繁多,其硫氧化相关基因、酶和途径也多种多样。近几年,相关方面的研究已取得很多进展,但在不同层面仍存在一些尚未解决的科学问题。本文主要围绕硫氧化细菌的种类及硫氧化途径的研究进展进行了综述。  相似文献   

9.
硫循环图的设计王娥叶(山东省烟台教育学院生物学系264001)硫是地壳中分布广泛而且相当丰富的元素,是植物体内必需的矿质元素,是蛋白质的基本成分。在自然界中,硫主要存在于岩石、矿物(如石膏、黄铁矿等)和化石燃料中。硫循环既属沉积型,也属气体型。束缚在...  相似文献   

10.
漫谈麦角     
麦角是麦类的子房受麦角菌病害后的产物。麦角菌是一种寄生在麦类的病菌,它在植物分类学上是属子菌藻植物门(Thallophyta);子囊菌纲(Ascom-ycetes);核菌目(Pyrenomycetales);麦角菌科(Hypocreaceae)麦角菌(Claviceps purpurea),Tulasne.)。它寄生在禾本科植物的子房中而形成菌核,菌核较硬,形状有点像动物的角,所以叫做麦角(Ergota)。主要产麦角的地方,以苏联、西班牙、波兰和葡萄牙等国比较多,在我国华北也有少最的野生,1952年我们在长沙岳麓山野生的鹅冠草上采得有麦角,1954年在南岳南天门至上封寺一带的荒草地生长有  相似文献   

11.
Ergothioneine (EGT) is a histidine betaine derivative that exhibits antioxidant action in humans. EGT is primarily synthesized by fungal species and a number of bacterial species. A five-gene cluster (egtA, egtB, egtC, egtD & egtE) responsible for EGT production in Mycobacteria smegmatis has recently been identified. The first fungal biosynthetic EGT gene (NcEgt-1) has also been identified in Neurospora crassa. NcEgt-1 contains domains similar to those found in M. smegmatis egtB and egtD. EGT is biomembrane impermeable. Here we inferred the evolutionary history of the EGT cluster in prokaryotes as well as examining the phyletic distribution of Egt-1 in the fungal kingdom. A genomic survey of 2509 prokaryotes showed that the five-gene EGT cluster is only found in the Actinobacteria. Our survey identified more than 400 diverse prokaryotes that contain genetically linked orthologs of egtB and egtD. Phylogenetic analyses of Egt proteins show a complex evolutionary history and multiple incidences of horizontal gene transfer. Our analysis also identified two independent incidences of a fusion event of egtB and egtD in bacterial species. A genomic survey of over 100 fungal genomes shows that Egt-1 is found in all fungal phyla, except species that belong to the Saccharomycotina subphylum. This analysis provides a comprehensive analysis of the distribution of the key genes involved in the synthesis of EGT in prokaryotes and fungi. Our phylogenetic inferences illuminate the complex evolutionary history of the genes involved in EGT synthesis in prokaryotes. The potential to synthesize EGT is a fungal trait except for species belonging to the Saccharomycotina subphylum.  相似文献   

12.
《Free radical research》2013,47(12):1036-1045
Abstract

In addition to excretion of metabolic waste products, organic ionic transporters facilitate uptake of specific compounds of physiological importance. In animals, the organic cation transporter, OCTN1 was found to enable the specific uptake of the unique amino acid, ergothioneine (EGT). EGT can accumulate in the body at up to millimolar concentrations and is believed to function as a physiological antioxidant. However the main function of EGT and the reasons for its active accumulation in the body remain obscure. Through bioinformatic approaches, we identified an analogous EGT transporter in the nematode, Caenorhabditis elegans. The present study investigated and characterized deletion mutants of this gene, OCT-1, in the nematodes. Gene deletion mutations of the OCT-1 transporter were shown to decrease overall lifespan of the worms and increase oxidative damage. However the absence of impaired EGT uptake and the inability of excess EGT to rescue the debilitating phenotype indicate that EGT transport does not explain the deleterious effects of the gene deletion.  相似文献   

13.
《Free radical research》2013,47(9):1049-1060
Abstract

Male C57BL/6J mice treated with D-galactose (DG) were used to examine the effects of ergothioneine (EGT), melatonin (MEL), or their combination (EGT+MEL) on learning and memory abilities. The mice were divided into five groups and injected subcutaneously with DG (0.3 mL of 1% DG/mouse) except for group 1 (normal controls). Group 3 was orally supplemented with EGT [0.5 mg/kg body weight (bw)], group 4 with MEL (10 mg/kg bw, p.o.), and group 5 with EGT+MEL. EGT and MEL were provided daily for 88 days, while DG was provided between days 7 to 56. Active avoidance task and Morris water-maze task were used to evaluate learning and memory abilities. DG treatment markedly increased escape latency and decreased the number of avoidance in the active avoidance test, whereas EGT and MEL alone significantly improved the performance. DG also impaired the learning and memory abilities in the water-maze task, and EGT and MEL alone also significantly improved the performance. EGT+MEL produced the strongest effects in both tasks. EGT and MEL alone markedly decreased β-amyloid protein accumulation in the hippocampus and significantly inhibited lipid peroxidation and maintained glutathione/glutathione disulfide ratio and superoxide dismutase activity in brain tissues of DG-treated mice. MEL alone completely prevented the rise in brain acetylcholine esterase activity induced by DG, whereas EGT and EGT+MEL were only partially effective. Overall, EGT, MEL, and, in particular, the combination of EGT and MEL effectively protect against learning and memory deficits in C57BL/6J mice treated with DG, possibly through attenuation of oxidative damage.  相似文献   

14.
Ergothioneine (EGT) is synthesized in mycobacteria, but limited knowledge exists regarding its synthesis, physiological role, and regulation. We have identified Rv3701c from Mycobacterium tuberculosis to encode for EgtD, a required histidine methyltransferase that catalyzes first biosynthesis step in EGT biosynthesis. EgtD was found to be phosphorylated by the serine/threonine protein kinase PknD. PknD phosphorylates EgtD both in vitro and in a cell-based system on Thr213. The phosphomimetic (T213E) but not the phosphoablative (T213A) mutant of EgtD failed to restore EGT synthesis in a ΔegtD mutant. The findings together with observed elevated levels of EGT in a pknD transposon mutant during in vitro growth suggests that EgtD phosphorylation by PknD negatively regulates EGT biosynthesis. We further showed that EGT is required in a nutrient-starved model of persistence and is needed for long term infection of murine macrophages.  相似文献   

15.
When social scientists began employing evolutionary game theory (EGT) in their disciplines, the question arose what the appropriate interpretation of the formal EGT framework would be. Social scientists have given different answer, of which I distinguish three basic kinds. I then proceed to uncover the conceptual tension between the formal framework of EGT, its application in the social sciences, and these three interpretations. First, I argue that EGT under the biological interpretation has a limited application in the social sciences, chiefly because strategy replication often cannot be sensibly interpreted as strategy bearer reproduction in this domain. Second, I show that alternative replication mechanisms imply interpersonal comparability of strategy payoffs. Giving a meaningful interpretation to such comparisons is not an easy task for many social situations, and thus limits the applicability of EGT in this domain. Third, I argue that giving a new interpretation both to strategy replication and selection solves the issue of interpersonal comparability, but at the costs of making the new interpretation incompatible with natural selection interpretations of EGT. To the extent that social scientists seek such a natural selection interpretation, they face a dilemma: either face the challenge that interpersonal comparisons pose, or give up on the natural selection interpretation. By identifying these tensions, my analysis pleas for greater awareness of the specific purposes of EGT modelling in the social sciences, and for greater sensitivity to the underlying microstructure on which the evolutionary dynamics and other EGT solution concepts supervene.  相似文献   

16.
UVA irradiation-induced skin damage and redox imbalance have been shown to be ameliorated by ergothioneine (EGT), a naturally occurring sulfur-containing amino acid. However, the responsible molecular mechanism with nanomolar concentrations of EGT remains unclear. We investigated the dermato protective efficacies of EGT (125–500 nM) against UVA irradiation (15 J/cm2), and elucidated the underlying molecular mechanism in human keratinocyte-derived HaCaT cells. We found that EGT treatment prior to UVA exposure significantly increased the cell viability and prevented lactate dehydrogenase release into the medium. UVA-induced ROS and comet-like DNA formation were remarkably suppressed by EGT with a parallel inhibition of apoptosis, as evidenced by reduced DNA fragmentation (TUNEL), caspase-9/-3 activation, and Bcl-2/Bax dysregulation. Furthermore, EGT alleviated UVA-induced mitochondrial dysfunction. Dose-dependent increases of antioxidant genes, HO-1, NQO-1, and γ-GCLC and glutathione by EGT were associated with upregulated Nrf2 and downregulated Keap-1 expressions. This was confirmed by increased nuclear accumulation of Nrf2 and inhibition of Nrf2 degradation. Notably, augmented luciferase activity of ARE may explain Nrf2/ARE-mediated signaling pathways behind EGT dermato-protective properties. We further demonstrated that Nrf2 translocation was mediated by PI3K/AKT, PKC, or ROS signaling cascades. This phenomenon was confirmed with suppressed nuclear Nrf2 activation, and consequently diminished antioxidant genes in cells treated with respective pharmacological inhibitors (LY294002, GF109203X, and N-acetylcysteine). Besides, increased basal ROS by EGT appears to be crucial for triggering the Nrf2/ARE signaling pathways. Silencing of Nrf2 or OCTN1 (EGT carrier protein) signaling with siRNA showed no such protective effects of EGT against UVA-induced cell death, ROS, and apoptosis, which is evidence of the vitality of Nrf2 translocation and protective efficacy of EGT in keratinocytes. Our findings conclude that EGT at nanomolar concentrations effectively ameliorated UVA-induced skin damage, and may be considered as a desirable food supplement for skin protection and/or preparation of skin care products.  相似文献   

17.
Ergothioneine (EGT) is a histidine derivative with sulfur on the imidazole ring and a trimethylated amine; it is postulated to have an antioxidant function. Although EGT apparently is only produced by fungi and some prokaryotes, it is acquired by animals and plants from the environment, and is concentrated in animal tissues in cells with an EGT transporter. Monobromobimane derivatives of EGT allowed conclusive identification of EGT by LC/MS and the quantification of EGT in Colletotrichum graminicola and Neurospora crassa conidia and mycelia. EGT concentrations were significantly (α=0.05) higher in conidia than in mycelia, with approximately 17X and 5X more in C. graminicola and N. crassa, respectively. The first EGT biosynthetic gene in a fungus was identified by quantifying EGT in N. crassa wild type and knockouts in putative homologs of actinomycete EGT biosynthetic genes. NcΔEgt-1, a strain with a knockout in gene NCU04343, does not produce EGT, in contrast to the wild type. To determine the effects of EGT in vivo, we compared NcΔEgt-1 to the wild type. NcΔEgt-1 is not pleiotropically affected in rate of hyphal elongation in Vogel's medium either with or without ammonium nitrate and in the rate of germination of macroconidia on Vogel's medium. The superoxide-producer menadione had indistinguishable effects on conidial germination between the two strains. Cupric sulfate also had indistinguishable effects on conidial germination and on hyphal growth between the two strains. In contrast, germination of NcΔEgt-1 conidia was significantly more sensitive to tert-butyl hydroperoxide than the wild type; germination of 50% (GI(50)) of the NcΔEgt-1 conidia was prevented at 2.7 mM tert-butyl hydroperoxide whereas the GI(50) for the wild type was 4.7 mM tert-butyl hydroperoxide, or at a 1.7X greater concentration. In the presence of tert-butyl hydroperoxide and the fluorescent reactive oxygen species indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, significantly (P=0.0002) more NcΔEgt-1 conidia fluoresced than wild type conidia, indicating that EGT quenched peroxides in vivo. While five to 21-day-old conidia of both strains germinated 100%, NcΔEgt-1 conidia had significantly (P<0.001) diminished longevity. Linear regression analysis indicates that germination of the wild type declined to 50% in 35 days, in comparison to 25 days for the NcΔEgt-1, which is equivalent to a 29% reduction in conidial life span in the NcEgt-1 deletion strain. Consequently, the data indicate that endogenous EGT helps protect conidia during the quiescent period between conidiogenesis and germination, and that EGT helps protect conidia during the germination process from the toxicity of peroxide but not from superoxide or Cu(2+). Based on an in silico analysis, we postulate that NcEgt-1 was acquired early in the mycota lineage as a fusion of two adjacent prokaryotic genes, that was then lost in the Saccharomycotina, and that NcEgt-1 catalyzes the first two steps of EGT biosynthesis from histidine to hercynine to hercynylcysteine sulfoxide.  相似文献   

18.
Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2′-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.  相似文献   

19.
This study investigates the therapeutic effect and the underlying mechanisms of ergothioneine (EGT) on the testicular damage caused by varicocele (VC) in vivo, in vitro, and in silico. This preclinical study combines a series of biological experiments and network pharmacology analyses. A total of 18 Sprague Dawley (SD) male rats were randomly and averagely divided into three groups: the sham-operated, VC model, and VC model with EGT treatment (VC + EGT) groups. The left renal vein of the VC model and the VC + EGT groups were half-ligated for 4 weeks. Meanwhile, the VC + EGT group was intragastrically administrated with EGT (10 mg/kg). GC1 and GC2 cells were exposed to H2O2 with or without EGT treatment to re-verify the conclusion. The structure disorder of seminiferous tubules ameliorated the apoptosis decrease in the VC rats receiving EGT. EGT can also increase the sperm quality of the VC model rats (p < 0.05). The exposure to H2O2 decreased proliferation and increased apoptosis of GC1 and GC2 cells, which was revisable by adding EGT to the plates (p < 0.05). The network pharmacology and molecular docking were conducted to explore the potential targets of EGT in VC, and HSP90AA1 was identified as the pivotal gene, which was validated by western blot, immunohistochemistry, and RT-qPCR both in vivo and in vitro (p < 0.05). Overall, EGT attenuates the testicular injury in the VC model both in vivo and in vitro by potentially potentiating the expression of HSP90AA1.  相似文献   

20.
麦角硫因(ergothioneine,EGT)基于其强抗氧化及体内消耗率低的特点,在人体内拥有多种重要的生理功能。但是在高产EGT微生物筛选和新菌株的选育研究中,现有的EGT检测方法因其步骤繁琐、使用的试剂和设备昂贵而亟待改进。本研究基于EGT的理化性质,建立了EGT-硫氰酸铁高通量快速检测体系,同时选用不同EGT产量的灵芝菌株以及灵芝融合新菌株对该检测体系的准确性进行验证。结果表明该方法可以快速准确地比较出样本间EGT产量高低,使原本需3~4天的工作缩短至2~3 h,HPLC验证结果显示,EGT-硫氰酸铁高通量快速检测体系效果良好,体系稳定。本研究结果将为高产EGT微生物的高通量筛选及高产EGT新菌株的选育提供新的方法和思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号