首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 107 binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37°C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

2.
Previous work from this laboratory has shown that 4-fluoro-3-nitrophenyl azide (FNPA) is an effective photoaffinity labeling probe for MAO-B (Chen et al., Biochem. Pharmac.34, 781–785, 1985). The FNPA binding sites have been further studied by using [3H]FNPA. When [3H]FNPA was photolyzed with purified beef liver MAO, then subjected to tryptic and chymotryptic digestion, three radioactive peaks were observed after Sephadex G-25 column chromatography procedure. The extent of [3H]FNPA incorporation varied directly with [3H]FNPA concentration. They could be protected by the presence of the substrate (phenylethylamine) or inhibitors (pargyline and trans-phenylcyclopropylamine) of MAO-B during photolysis. These protections were concentration dependent. Furthermore, the decrease in [3H]FNPA labeling in the presence of inhibitors paralleled the decrease in MAO catalytic activity. These results suggest that the FNPA binding sites were related to the active site of MAO-B. Under the same conditions, the separation profiles of [3H]FNPA labeled and [3H]pargyline labeled tryptic-chymotryptic peptides after Sephadex G-25 column chromatography are distinctly different. This result suggests that FNPA labeling sites may be different from the pargyline binding site. Since pargyline binds to the prosthetic group(-FAD) of MAO, [3H]FNPA may label different domains of the active site. This probe may be useful for the characterization of the active site of MAO-B.  相似文献   

3.
Human transferrin was labeled with 59Fe at one of its two metal-binding sites (designated A) at pH 6.0. 55Fe was then added to site B at pH 7.5. Both isotopes of iron were taken up in equal proportions by human reticulocytes. These experiments do not support the hypothesis that each binding site of transferrin has a different physiologic function.  相似文献   

4.
To investigate structure-function relationships of cytochromes P450 (CYP), 3-azidiamantane was employed for photoaffinity labeling of rabbit microsomal CYP2B4. Four diamantane labeled tryptic fragments were identified by mass spectrometry and sequencing: peptide I (Leu359-Lys373), peptide II (Leu30-Arg48), peptide III (Phe127-Arg140), and peptide IV (Arg434-Arg443). Their positions were projected into CYP2B4 model structures and compared with substrate binding sites, proposed by docking of diamantane. We identified novel binding regions outside the active site of CYP2B4. One of them, defined with diamantane modified Arg133, marks a possible entrance to the active site from the heme proximal face. In addition to crystal structures of CYP2B4 chimeras and molecular dynamics simulations, our data of photoaffinity labeling of the full CYP2B4 molecule provide further insight into functional and structural aspects of substrate binding.  相似文献   

5.
Chemerin is a potent chemoattractant for cells expressing the GPCR CMKLR1, and is thought to play important roles in cell migration and recruitment to sites of tissue damage and inflammation. Here we report the NMR assignments of the 15.6 kDa active form of uniformly 15N, 13C labeled chemerin.  相似文献   

6.
 Singly and doubly labeled δ-aminolevulinic acid derivatives were used to prepare rat liver outer mitochondrial membrane (OM) cytochrome b 5 containing a 13C-labeled heme active site. A variety of NMR experiments, including HMBC and INADEQUATE in conjunction with the more commonly used HMQC, NOESY, and COSY, were conducted to make unambiguous assignments of protonated carbons and the quaternary pyrrole-α and -β carbons in both isomeric forms of the paramagnetic active center of OM cytochrome b 5. Because the long interpulse delays in the HMBC experiment have a detrimental effect on the detectability of fast relaxing paramagnetically affected resonances, INADEQUATE is proposed as the experiment of choice for assigning quaternary carbons in paramagnetic hemes with carefully chosen macrocycle labeling patterns. Furthermore, the applicability of the INADEQUATE experiment to paramagnetic heme active sites should be facilitated greatly by the availability of biosynthetic methods for producing isotopically labeled b-hemes and, more recently, isotopically labeled c-hemes. Received: 21 September 1998 / Accepted: 25 November 1998  相似文献   

7.
Low molecular weight heparin of low-anticoagulant activity and high molecular weight heparin of correspondingly high activity were prepared by chromatography on protamine-Sepharose; preparations subjected to limited N-desulfation (5–10% free amino groups) by solvolysis were labeled with 5-dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride) or rhodamine B isothiocyanate (RITC). The fluorescent heparins retained approximately 50% of the original anticoagulant activities. Dansyl-heparin on binding to antithrombin III (ATIII) exhibited a 2.5-fold enhancement of dansyl fluorescence intensity. This effect could be prevented by excess unlabeled heparin. A 7900 molecular weight dansyl-heparin preparation bound to ATIII with a stoichiometry of close to 2:1 and with an apparent association constant for binding (Ka) of 4.9 × 105, m?1, whereas a 21,600 molecular weight fraction bound at 0.7:1 with the protein and with an apparent Ka = 7.9 × 105, m?1. When ATIII reacted with a mixture of low molecular weight dansyl-heparin and low molecular weight RITC-heparin, there was enhancement of RITC fluorescence emission when excited at the dansyl excitation maximum; this effect was not observed when either of the labeled heparin species was prepared from high molecular weight material. The results are consistent with the proposal that a single molecule of high molecular weight, high-activity heparin occupies two sites when it binds to ATIII, whereas low molecular weight, low-activity heparin binds to the two sites separately.  相似文献   

8.
Di-isopropylfluorophosphate (DFP) labeled with phosphorus-32 was applied to fragments of the diaphragm and sternomastoid muscles of the mouse, in conditions in which it saturated all available sites at the motor endplates. After adequate washing and exchange with unlabeled DFP, single endplates were obtained by microdissection and their radioactivity was found by beta track radioautography. The number of sites phosphorylated by DFP-32P per endplate was relatively constant for each muscle: in the sternomastoid, about 9 x 107 sites per endplate, in the diaphragm, about 3 x 107. Reaction with DFP-32P was abolished by prior treatment with unlabeled DFP. Labeling was unaffected by prior fixation in formaldehyde, but was inversely proportional to the time of incubation in the Koelle staining medium, when this preceded labeling. The contribution of acetylcholinesterase (AChase) to this total number of DFP-reactive sites was determined by three methods. The first involved reactivation of the phosphorylated AChase by pyridine-2-aldoxime methiodide (2-PAM), in conditions in which the reactivation of other enzymes would be insignificant. The other two methods involved protection of the active centers of AChase from phosphorylation by labeled DFP by use of 284C51, an inhibitor highly specific for this enzyme, or by use of eserine. Each of these methods indicated that about 35% of the DFP-reactive sites at endplates of the sternomastoid and diaphragm are AChase. The mean number of AChase molecules was thus found to be 3.1 x 107 and 1.1 x 107per endplate in sternomastoid and diaphragm, respectively. No significant reaction of labeled DFP with muscle and nerve was observed. Mast cells in the muscle had a concentration of DFP-reactive sites far higher than the endplates.  相似文献   

9.
Omega-conotoxin GVIA (-CTX), as a selective blocker for an N-type Ca2+ channel, has been conveniently used in many molecular biochemical and pharmacological experiments. There has been little elucidation of 125I--CTX binding sites (mainly the 135-kDa band) in the crude membranes from chick brain, although the characteristics of specific 125I--CTX binding and labeling sites in chick brain membranes have been investigated in our previous research. In this work, our goal is to further identify 125I--CTX labeling sites in chick brain membranes by using anti-B1Nt antibodies (against the N-terminal segment B1Nt of N- or P-type Ca2+ channel 1-subunits). The 125I--CTX–labeled sites in chick brain membranes could be solubilized and immunoprecipitated by using an anti B1Nt antibody. The molecular weight of the immunoprecipitated protein was determined as 135 kDa, which is inconsistent with that of the specific 125I--CTX binding protein reported previously. Moreover, the 125I--CTX–labeled protein could be purified by the method of preparative SDS-PAGE and recognized by anti-B1Nt antibodies in Western blotting analysis. These results indicated that anti-B1Nt antibodies could truly recognize 125I--CTX–labeled sites as the main band of 135 kDa from chick brain membranes, and the -CTX–labeled site (mainly the 135-kDa band) should be N-type Ca2+ channel 1-subunits.  相似文献   

10.
Amidination of the outer and inner surfaces of the human erythrocyte membrane   总被引:12,自引:0,他引:12  
We have synthesized a novel imidoester, isethionyl acetimidate, which is unable to penetrate the membrane of the human erythrocyte. It has the same specificity for amino groups as ethyl acetimidate, which penetrates the membrane. Either reagent can be labeled with 3H or 14C and, thus, be used to convert amines to radioactive amidines. An erythrocyte membrane saturated with either compound functions nearly normally. Therefore, the membrane can be double labeled if the amino groups on the outer surface of a cell are saturated with isethionyl acetimidate (e.g. labeled with 14C) and the remaining active sites are saturated with ethyl acetimidate (labeled with 3H). Alternatively, the membrane can be isolated after saturation with [14C]isethionyl acetimidate and treated with [3H]isethionyl acetimidate. From quantitative experiments of this kind we conclude that there are more than ten times as many reactive amino groups in protein on the inner surface than on the outer surface of the membrane. Nearly all of the reactive amino groups in lipid are on the inner surface. The localization of individual polypeptides confirms and extends assignments made previously by other techniques; as many as four major components may span the membrane. The proteins and lipids react to the same extent with ethyl acetimidate in the intact cell as they do in isolated membranes; this implies that the isolation does not load to major structural rearrangements.  相似文献   

11.
The Type IIB restriction–modification protein BcgI contains A and B subunits in a 2:1 ratio: A has the active sites for both endonuclease and methyltransferase functions while B recognizes the DNA. Like almost all Type IIB systems, BcgI needs two unmethylated sites for nuclease activity; it cuts both sites upstream and downstream of the recognition sequence, hydrolyzing eight phosphodiester bonds in a single synaptic complex. This complex may incorporate four A2B protomers to give the eight catalytic centres (one per A subunit) needed to cut all eight bonds. The BcgI recognition sequence contains one adenine in each strand that can be N6-methylated. Although most DNA methyltransferases operate at both unmethylated and hemi-methylated sites, BcgI methyltransferase is only effective at hemi-methylated sites, where the nuclease component is inactive. Unlike the nuclease, the methyltransferase acts at solitary sites, functioning catalytically rather than stoichiometrically. Though it transfers one methyl group at a time, presumably through a single A subunit, BcgI methyltransferase can be activated by adding extra A subunits, either individually or as part of A2B protomers, which indicates that it requires an assembly containing at least two A2B units.  相似文献   

12.
Summary A three-dimensional 1H chemical shift/1H-15N dipolar coupling/15N chemical shift correlation spectrum was obtained on a sample of specifically 15N-labeled magainin peptides oriented in lipid bilayers between glass plates in a flat-coil probe. The spectrum showed complete resolution of the resonances from two labeled amide sites in all three dimensions. The three orientationally dependent frequencies associated with each resonance enabled the orientation of the peptide planes to be determined relative to the direction of the applied magnetic field. These results demonstrate the feasibility of multiple-pulse spectroscopy in a flat-coil probe, the ability to measure three spectral parameters from each site in a single experiment, and the potential for resolving among many labeled sites in oriented membrane proteins.  相似文献   

13.
The Mcm2-7 (minichromosome maintenance) complex is a toroidal AAA+ ATPase and the putative eukaryotic replicative helicase. Unlike a typical homohexameric helicase, Mcm2-7 contains six distinct, essential, and evolutionarily conserved subunits. Precedence to other AAA+ proteins suggests that Mcm ATPase active sites are formed combinatorially, with Walker A and B motifs contributed by one subunit and a catalytically essential arginine (arginine finger) contributed by the adjacent subunit. To test this prediction, we used copurification experiments to identify five distinct and stable Mcm dimer combinations as potential active sites; these subunit associations predict the architecture of the Mcm2-7 complex. Through the use of mutant subunits, we establish that at least three sites are active for ATP hydrolysis and have a canonical AAA+ configuration. In isolation, these five active-site dimers have a wide range of ATPase activities. Using Walker B and arginine finger mutations in defined Mcm subunits, we demonstrate that these sites similarly make differential contributions toward viability and ATP hydrolysis within the intact hexamer. Our conclusions predict a structural discontinuity between Mcm2 and Mcm5 and demonstrate that in contrast to other hexameric helicases, the six Mcm2-7 active sites are functionally distinct.  相似文献   

14.
Phosphorylation of Plant H2A Histones   总被引:2,自引:1,他引:1  
Phosphorylation of wheat (Triticum aestivum) and alfalfa (Medicago sativa) H2A histone variants was examined during early seedling growth. The C-terminal regions of wheat H2A variants contain multiple S-P tetrapeptides (serine-proline adjacent to a pair of basic amino acids) which resemble known phosphorylation sites in histones from other species. Phosphorylation of nucleosomal core histones was assessed by autoradiography of proteins labeled in vivo with 32Pi and resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylation sites were mapped by cleaving in vivo labeled H2A variants with N-bromosuccinimide. Essentially all phosphorylation of nucleosomal core histones in wheat and alfalfa seedlings occurred within the C-terminal peptides obtained from wheat and alfalfa H2A variants. A hypothesis accounting for the presence of large H2A and H2B histone variants in plants and phosphorylation of plant H2A C-terminal regions is proposed. The utility of S-P tetrapeptides for modulation of DNA-protein interactions is discussed.  相似文献   

15.
The crystal structure of the full-length rat peroxisomal multifunctional enzyme, type 1 (rpMFE1), has been determined at 2.8 Å resolution. This enzyme has three catalytic activities and two active sites. The N-terminal part has the crotonase fold, which builds the active site for the Δ32-enoyl-CoA isomerase and the Δ2-enoyl-CoA hydratase-1 catalytic activities, and the C-terminal part has the (3S)-hydroxyacyl-CoA dehydrogenase fold and makes the (3S)-hydroxyacyl-CoA dehydrogenase active site. rpMFE1 is a multidomain protein having five domains (A–E). The crystal structure of full-length rpMFE1 shows a flexible arrangement of the A-domain with respect to the B–E-domains. Because of a hinge region near the end of the A-domain, two different positions of the A-domain were observed for the two protein molecules (A and B) of the asymmetric unit. In the most closed conformation, the mode of binding of CoA is stabilized by domains A and B (helix-10), as seen in other crotonase fold members. Domain B, although functionally belonging to the N-terminal part, is found tightly associated with the C-terminal part, i.e. fixed to the E-domain. The two active sites of rpMFE1 are ∼40 Å apart, separated by a tunnel, characterized by an excess of positively charged side chains. Comparison of the structures of rpMFE1 with the monofunctional crotonase and (3S)-hydroxyacyl-CoA dehydrogenase superfamily enzymes, as well as with the bacterial α2β2-fatty acid oxidation multienzyme complex, reveals that this tunnel could be important for substrate channeling, as observed earlier on the basis of the kinetics of rpMFE1 purified from rat liver.  相似文献   

16.
Cytochromes P450 (CYPs or P450s) contain a highly conserved threonine residue in the active site, which is referred to as Thr302 in the amino acid sequence of CYP2B4. Extensive biochemical and crystallographic studies have established that this Thr302 plays a critical role in activating molecular oxygen to generate Compound I, a putative iron(IV)-oxo porphyrin cation radical, that carries out the preliminary oxygenation of CYP substrates. Because of its proximity to the center of the P450 active site, this Thr302 is susceptible to mechanism-based inactivation under certain conditions. In this article, we review recent studies on the mechanism-based inactivation of three mammalian P450s in the 2B family, CYP2B1 (rat), 2B4 (rabbit) and 2B6 (human) by tert-butylphenylacetylene (tBPA). These studies showed that tBPA is a potent mechanism-based inactivator of CYP2B1, 2B4 and 2B6 with high kinact/KI ratios (0.23–2.3 min−1 μM−1) and low partition ratios (0–5). Furthermore, mechanistic studies revealed that tBPA inactivates these three CYP2B enzymes through the formation of a single ester adduct with the Thr302 in the active site. These inhibitory properties of tBPA allowed the preparation of a modified CYP2B4 where the Thr302 was covalently and stoichiometrically labeled by a reactive intermediate of tBPA in quantities large enough to permit spectroscopic and crystallographic studies of the consequences of covalent modification of Thr302. Molecular modeling studies revealed a unique binding mode of tBPA in the active site that may shed light on the potency of this inhibition. The results from these studies may serve as a basis for designing more specific and potent inhibitors for P450s by targeting this highly conserved threonine residue which is present in the active sites of most mammalian P450s.  相似文献   

17.
Commercially available carboxylated latex beads were covalently labeled with [3H]-tyramine and used in a quantitative phagocytosis assay. Macrophage cells were incubated with 3H-beads, then treated with trypsin-Versene and washed through fetal calf serum to remove uningested beads. Uptake was linear with time (up to 6 hr) and cell number (up to 5 × 105). PU5-1.8 and RAW264 macrophage tumor culture lines were more active than adherent cells from peptone- or oil-induced peritoneal exudates of mice, which were more active than normal peritoneal adherent cells. PU5-1.8 phagocytosis was especially resistant to inhibition by cytochalasin B, but cytochalasin A and iodoacetic acid were effective inhibitors. Treatment of PU5-1.8 cells with LPS or PPD in vitro stimulated latex ingestion; the presence of hydrocortisone blocked the increase but not baseline activity. The easy preparation and storage of labeled beads makes this convenient assay method particularly useful for comparison of the phagocytic activity of a number of cell populations.  相似文献   

18.
We have uniformly labeled calmodulin with tetramethyl rhodamine isothiocyanate (CaM-RITC) and used the derivative as a molecular probe in order to identify available, unoccupied calmodulin-binding sites. In mildly fixed (3% formalin) cultured 3T3 cells, the biologically active CaM-RITC bound predominantly to mitochondria. Binding was markedly reduced in the presence of 1 mM EGTA. Stelazine, a phenothiozine which binds to calmodulin, prevented the interaction of CaM-RITC with mitochondrial sites. A 10 fold excess of unlabeled CaM competitively inhibited binding. Fluorescently labeled troponin C and parvalbumin did not bind to mitochondria on any other cellular organelle. Rhodamine (TMRITC) alone did not bind to 3T3 mitochondria. Similar results were obtained using 125I-calmodulin binding to isolated rat liver mitochondria. When solubilized mitochondrial proteins were subjected to calmodulin-Sepharose affinity chromatography and eluted with 1 mM EGTA, there were two major polypeptides 120,000 and 67,000 daltons and at least three minor species (100,000, 60,000 and 40,000 daltons). The interaction required an active Ca2+-CaM complex and is specific for CaM. Double fluorescent staining with CaM-RITC and fluorescein-labeled antibodies to tubulin and DNAase I revealed a mitochondrial distribution pattern similar to that of microtubule arrays but unrelated to actin cabling. There was no evidence that CaM-RITC directly interacted with either microtubules or microfilaments.  相似文献   

19.
To characterize the sites phosphorylated by endogenous kinases, phosphopeptides of isolated nucleolar nonhistone proteins were analyzed. Major phosphoprotein bands C23 and B23 were 32P labeled in vitro and electrophoretically isolated. Tryptic phosphopeptides were resolved by DEAE-Sephadex chromatography into fractions A, B and C for band C23 and α and β for band B23. Each of these fractions contained phosphoserine, had a distinct amino acid composition of 49–65% glx + asx and 4–11% lys, and had molecular weights of 7–11,000 determined on Sephadex G50. These data indicate that two nucleolar nonhistone proteins have similar phosphorylated regions of high negative charge density.  相似文献   

20.
Morpholino nucleoside triphosphates (A, U, G, C, T) bearing the active functional amino group tethered to morpholine residue and their fluorescently labeled derivatives were synthesized. All compounds were characterized by 1H, 13C, and 31P NMR, and mass spectrometry. A possibility of using fluorescently labeled morpholino nucleoside triphosphates as chain terminators in DNA sequencing is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号