首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence has been proposed as an important safeguard against neoplasia. One of the hallmarks of cellular senescence in vitro as well as human aging in vivo is a reduced intracellular protein catabolism. The pathways affected and the mechanisms responsible for the decrease in overall protein turnover in aging cells are not well understood. Our aim was to determine whether or not expression of one of the major hepatic lysosomal cysteine peptidases, cathepsin B, changes during aging of Sprague-Dawley rats. Cathepsin B activity was assessed in whole rat liver homogenates, and was found to be increased fourfold (P< or =0.001) in aged livers compared with younger counterparts. This was paralleled by an at least a twofold increase in mature cathepsin B protein. Nonetheless, Northern blot analysis of total liver RNA revealed no change in steady-state levels of cathepsin B mRNAs. These findings seem to contradict the present dogma according to which aging tissues have a reduced intracellular capacity to catabolise proteins. We propose that our earlier observation of the accumulation of T-kininogen, a potent but reversible cysteine peptidase inhibitor, in aging rat liver may provide a plausible explanation for this discrepancy.  相似文献   

2.
Cathepsin E (CE) is an endosomal aspartic proteinase of the A1 family that is highly homologous to the lysosomal aspartic proteinase cathepsin D (CD). Newly synthesized CE undergoes several proteolytic processing events to yield mature CE, from which the N-terminal propeptide usually comprising 39 amino acids is removed. To define the role of the propeptide of CE in its biosynthesis and processing, we constructed two fusion proteins using chimeric DNAs encoding the CE propeptide fused to the mature CD tagged with HA at the COOH terminus (termed ED-HA) and encoding the CD propeptide fused to the mature CE (termed DE). Pulse-chase analysis revealed that wild-type CE expressed in human embryonic kidney cells is autoproteolytically processed into mature CE within a 12-h chase, whereas the chimeric DE failed to be converted into mature CE even after a 24-h chase. The DE chimera was nevertheless capable of acid-dependent autoactivation in vitro to yield a catalytically active form, although its specificity constants (kcat/Km) were considerably high but less (35%) than those of the wild-type CE. By contrast, the chimeric ED-HA expressed in HeLa cells underwent neither processing into a catalytically active enzyme nor acid-dependent autoactivation in vitro. The ED-HA protein was less stable than wt-CD-HA, as determined on pulse-chase analysis and on trypsin digestion. These data indicate that the propeptide of CE is essential for the correct folding, maturation, and targeting of this protein to its final destination.  相似文献   

3.
Changes in Brain Protease Activity in Aging   总被引:2,自引:1,他引:1  
Abstract: We measured changes in protease activity with aging, conducting assays of cathepsin D and calpain II activities and the rate of degradation of cytoskeletal proteins, preparing the enzymes and substrates from young and aged brains. Calpain preparations added to the young and to the aged substrates were standardized with casein as substrate so that age-related changes in calpain specificity and substrate susceptibility were measured. Several age-related differences were observed in substrate susceptibility and in enzyme activity. With respect to substrate, the neurofilament protein from young animals was somewhat more susceptible to calpain action than that from older animals. With respect to enzyme activity, calpain from aged brain cleaved neurofilament protein at a faster rate than did calpain from young. With neurofilaments, the most rapid breakdown usually occurred when enzyme from aged tissue was incubated with substrate from young. Kidney enzyme of aged rats incubated with neurofilament substrate of aged rats resulted in a more rapid breakdown than enzyme of young kidney incubated with substrate of young. The age dependence of tubulin breakdown was somewhat different from that of neurofilament breakdown. The most rapid breakdown usually occurred when using enzyme from young with tubulin from young. Incubation of neurofilament protein or tubulin with cathepsin D did not reveal any differences with aging. These studies suggest that an increase in enzyme activity observed previously during aging may also include changes in the properties of the enzyme (substrate specificity) and/or in the properties of their endogenous substrates (susceptibility to breakdown).  相似文献   

4.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

5.
To investigate the intracellular transport mechanism of lysosomal cathepsin L in yeast cells, we attempted to produce mouse cathepsin L in Saccharomyces cerevisiae by placing the coding region under the control of the promoter of the yeast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. Immunoblotting analysis by the use of an antibody specific for rat cathepsin L revealed that the yeast cells carrying the cathepsin L coding sequence produced 39- and 30-kDa products, which correspond to the rat procathepsin L and the single-chain form of mature cathepsin L, respectively. The precursor polypeptide showed sensitivity toward endoglycosidase H treatment. Cell fractionation experiments demonstrated that the processed form of 30-kDa cathepsin L was found to be colocalized to the yeast vacuole with the marker enzyme carboxypeptidase Y in a Ficoll step gradient. In the prepared vacuolar fraction, a considerable amount of cathepsin L was revealed to be cofractionated with the vacuolar membranes. Furthermore, the phase separation experiments with Triton X-114 provide the first evidence showing that the mature form of cathepsin L polypeptide is strongly associated with the vacuolar membranes. Therefore, the present results suggest that the mouse cathepsin L precursor polypeptide is initially synthesized as the proenzyme in the yeast cells and then correctly delivered to the vacuole. During the intracellular sorting pathway, the procathepsin L would undergo the post-translational proteolytic processing step to generate the mature enzyme. Based on these lines of evidence, we propose that cathepsin L is recognized by mechanisms similar to those for the intracellular sorting and processing of vacuolar proteins in the yeast cells.  相似文献   

6.
Involvement of macroautophagy in the dissolution of neuronal inclusions   总被引:4,自引:0,他引:4  
Ubiquitinated inclusions are a common feature of many neurodegenerative conditions. We have proposed that, at least in part, such inclusions may be formed due to dysfunction of the proteasome. We have modeled such proteasomal dysfunction by applying pharmacological inhibitors to cultured embryonic rat cortical neurons. This treatment leads to neuronal death and formation of ubiquitin/-synuclein-positive cytoplasmic inclusions. At late time points following proteasomal inhibition such inclusions are no longer discerned. Instead, many neurons accumulate small ubiquitinated aggregates, which may represent remnants of the inclusions. In this work we have examined a potential mechanism for inclusion dissolution. Electron microscopy images showed activation of macroautophagy at late time points after proteasomal inhibition. Labeling with LysoTracker Red, a dye that accumulates in acidic compartments, or immunostaining for the lysosomal enzyme Cathepsin D, showed an increase in globular staining. Cathepsin D co-localized partially with small ubiquitinated aggregates, but not inclusions. Application of an inhibitor of macroautophagy or of the vacuolar ATPase led to an increase in the number of inclusions and a decrease in small aggregates, whereas an activator of autophagy had the opposite effects. There was no significant change in apoptotic death following these manipulations. We conclude that, following proteasomal inhibition of cultured cortical neurons, there is activation of macroautophagy and of the lysosomal pathway. This activation results in dissolution of ubiquitinated inclusions into small aggregates, without directly impacting neuronal cell death. These data further support the idea that in this model inclusions and neuronal cell death are independent processes.  相似文献   

7.
Abstract: Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.  相似文献   

8.
Total and specific activity of cathepsin D (EC. 3.4.23.5) were measured in rat liver and brain from 1 to 98 days of age. The activity of cathepsin D in the liver of adult and newborn rats was the same while in the rat brain it was higher in adult than in newborn rats. In the liver maximum specific activity of cathepsin D occurred on the 10th postnatal day and minimum on the fourth day of age. In the brain maximum specific activity of the enzyme occurred on the 14th postnatal day. Total activity of cathepsin D increased after birth in rat liver and brain. These results are discussed in relation to the functional role of cathepsin D in the rat liver and the brain.  相似文献   

9.
We measured the activity of cathepsin D, the major cerebral protease, in 50 separate areas of the central nervous system of adult and aged humans, using hemoglobin as the substrate. The activity showed significant regional heterogeneity, with average differences of 50-100% between the lower and higher level areas, and a more than threefold difference between the lowest and highest levels. The forebrain, midbrain, and hindbrain each had areas of high and low activity; cerebellum and cord areas were among those with low activity. Cathepsin levels tended to increase with age in about half of the areas analyzed, and the increases were significant in 14. Statistically significant decreases with aging were observed in two areas. The increases varied between 30 and 60%, and the decreases were 20%. Enzyme activity in thalamus, hypothalamus, pons, medulla, and cerebellum increased with age. In the ventrolateral medulla, which contains the major portion of the cerebral noradrenergic cells, the cathepsin D levels increased with age; in the dorsal raphe area, which contains the major portion of the cerebral serotonergic cells, the enzyme levels decreased. The change with age in human brain seems to be less than what we observed in rat brain, where activity more than doubled in most areas. The changes in enzyme levels need to be tested at more ages to establish a pattern of changes in activity throughout life.  相似文献   

10.
Our recent studies have shown that cathepsin L is first synthesized as an enzymatically inactive proform in endoplasmic reticulum and is successively converted into an active form during intracellular transport and we postulated that aspartic proteinases would be responsible for the intracellular propeptide-processing step of procathepsin L accompanied by the activation of enzyme (Y. Nishimura, T. Kawabata, and K. Kato (1988) Arch. Biochem. Biophys. 261, 64-71). To better understand this proposed mechanism, we investigated the effect of pepstatin, a potent inhibitor of aspartic proteinases, on the intracellular processing kinetics of cathepsin L analyzed by pulse-chase experiments in vivo with [35S]methionine in the primary cultures of rat hepatocytes. In the pepstatin-treated cells, the proteolytic conversion of cellular procathepsin L of 39 kDa to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 5-h chase periods. Further, the subcellular fractionation experiments demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the light density microsomal fraction after 2 h of chase. These results suggest that pepstatin treatment caused a significant inhibitory effect on the intracellular processing and also on the intracellular movement of procathepsin L from the endoplasmic reticulum to the lysosomes. These findings provide the first evidence showing that aspartic proteinase may play an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo. Therefore, we suggest that cathepsin D, a major lysosomal aspartic proteinase, is more likely to be involved in this proposed model in the lysosomes.  相似文献   

11.
We found a dipeptidyl aminopeptidase activity in the parasitic protozoan Giardia lamblia with properties similar to the lysosomal cathepsin C of rat-liver lysosomes. Subcellular fractionation of this parasite indicated that the cathepsin C activity is located in organelles not distinguishable from the ones containing acid phosphatase, a known marker enzyme of Giardia lysosome-like peripheral vesicles. Contrary to the rat lysosomal enzyme, Giardia cathepsin C behaved like a membrane protein. Moreover, the enzyme was not solubilized by Triton X-100 or Triton X-100/SDS at 0 degrees C but could be substantially solubilized by octylglucoside, Triton X-100 at 37 degrees C or by a pretreatment with the cholesterol complexing agent beta-cyclodextrin before the Triton/SDS treatment carried out at 0 degrees C. These observations suggest that binding/anchorage of this enzyme to membranes occurs in cholesterol-rich microdomains.  相似文献   

12.
Intracellular transport and processing of lysosomal cathepsin B   总被引:2,自引:0,他引:2  
Intracellular transport and processing of lysosomal cathepsin B was investigated in the subcellular fractions of rat liver by pulse-labeling experiments with [35S]methionine in vivo. A newly synthesized procathepsin B with a molecular weight of 39 kDa firstly appeared in the rough microsomal fraction at 10 min postinjection of label. This procathepsin B moved from the microsomal fractions to the Golgi subfractions at 30 min postinjection, and then a processed mature enzyme appeared in the lysosomal fraction at 60 min. These results suggest that the propeptide-processing of procathepsin B takes place in lysosomes in the course of intracellular transport from endoplasmic reticulum through Golgi complex to lysosomes.  相似文献   

13.
Cathepsin X, a recently discovered lysosomal cysteine protease, shares common structural features and activity properties with cysteine protease cathepsin B. Based on its widespread mRNA distribution in primary tumors and tumor cell lines, a redundant function in tumor progression has been proposed. In this study, we have shown that these two related proteases exhibit different profiles with respect to their protein distribution in cells and tissues and to their possible roles in malignancy. Protein level of cathepsin X did not differ significantly between matched pairs of lung tumor and adjacent lung tissue obtained from patients with lung cancer whereas that of cathepsin B was 9.6-fold higher in tumor compared to adjacent lung tissue. Immunohistochemical analysis of lung tumor cathepsin X revealed very faint staining in tumor cells but positive staining in infiltrated histiocytes, alveolar macrophages, bronchial epithelial cells, and alveolar type II cells. Cathepsin X stained positive also in CD68+ cells in germinal centers of secondary follicles in lymph nodes, corresponding to tingible body macrophages. Two cell lines with proven invasive behavior, MCF-10A neoT and MDA-MB 231, showed positive staining for cathepsin B, but negative for cathepsin X. We showed that the invasive potential of MCF-10A neoT cells can be impaired by specific inhibitor of cathepsin B but not by that of cathepsin X. Cathepsin X was found in large amounts in the pro-monocytic U-937 cell line, in monocytes and in dendritic cells, generated from monocytes in vitro. Our results show that cathepsin X is not involved in degradation of extracellular matrix, a proteolytic event leading to tumor cell invasion and metastasis. Its expression, restricted to immune cells suggests a role in phagocytosis and the regulation of immune response.  相似文献   

14.
Cathepsin D (CD) and cathepsin E are representative lysosomal and nonlysosomal aspartic proteinases, respectively, and play an important role in the degradation of proteins, the generation of bioactive proteins, antigen processing, etc. Recenty, several lines of evidence have suggested the involvement of these two enzymes in the execution of neuronal death pathways induced by aging, transient forebrain ischemia, and excessive stimulation of glutamate receptors with excitotoxins. CD has also been shown to mediate apoptosis induced by various stimuli and p53-dependent tumor suppression. To gain more insight into in vivo functions of CD, mice deficient in this enzyme were generated. The mutant animals showed a progressive atrophy of the intestinal mucosa, a massive destruction of lymphoid organs, and a profound accumulation of ceroid lipofuscin, and developed a phenotype resembling neuronal ceroid lipofucinosis, suggesting that CD is essential for proteolysis of proteins regulating cell growth and tissue homeostasis. It has also been shown that CD molecules secreted from human prostate carcinoma cells are responsible for the generation of angiostatin, a potent endogenous inhibitor of angiogenesis, suggesting its contribution to the prevention of tumor growth and angiogenesis-dependent growth of metastases. Interestingly, pro-CD from human breast carcinoma cells showed a significantly lower angiostatin-generating activity than that from prostate carcinoma cells. Since deglycosylated CD molecules from both carcinoma cells showed a low angiostatin-generating activity, this discrepancy appeared to be attributed to the difference in the carbohydrate structures of CD molecules between the two cell types and to contribute to their potency to prevent tumor growth and metastases.  相似文献   

15.
The localization of cathepsin D-like acid proteinase in the rat stomach and other tissues was studied, and its biochemical properties were compared with those of rat gastric cathepsin D (EC 3.4.23.5). Cathepsin D-like acid proteinase existed overwhelmingly in the mucosal layer and was hardly detected in the gastric juice. Its subcellular distribution profile was very similar to that of acid phosphatase, but not to that of pepsinogen. This proteinase-like enzyme activity was also found in rat splenic extract. These results strongly suggest that the proteinase is a lysosomal enzyme. In addition, cathepsin D-like acid proteinase demonstrated an in vitro transition of molecular species during storage at -30 degrees C. Although this molecular change was distinctive in ion-exchange column chromatography and susceptibility to some enzyme inhibitors, it was not accompanied by a significant decrease in molecular weight. To compare cathepsin D-like acid proteinase with ordinary cathepsin D, gastric cathepsin D was newly purified to apparent homogeneity in polyacrylamide gel electrophoresis. Its biochemical properties demonstrate that this is a true cathepsin D in rat gastric mucosa. Moreover, this cathepsin D activity was not abolished by treatment with antiserum specific to cathepsin D-like acid proteinase or pepsinogen. From these results, we can conclude that the proteinase is a lysosomal acid proteinase different from newly purified gastric cathepsin D.  相似文献   

16.
Cathepsin D (EC 3.4.23.5) is one of the lysosomal enzymes responsible for proteolytic degradation in cells. By virtue of its mannose 6-phosphate residues, shortly after its synthesis, it is recognized by the receptors in the trans-Golgi network that mediate its transport to the lysosomes. The mammalian enzyme has been extensively characterized and several forms of cathepsin have also been identified. Cathepsins have also been isolated from other vertebrates and invertebrates and recent studies suggest that the lysosomal sorting machinery is evolutionarily conserved from fish to mammals. We recently characterized the putative mannose 6-phosphate receptors from the invertebrate starfish (Asterias rubens). In the present study we affinity purified the cathepsin D from this animal and biochemically characterized the same. Purified enzyme migrated as a single band on SDS-PAGE corresponding to a molecular mass of 45 kDa. The protein bound specifically to Con A-Sepharose gel and is glycosylated. The deglycosylated enzyme showed a molecular mass of ~ 40 kDa. Furthermore, an antibody raised for the purified enzyme in a rabbit recognizes the crude, the purified enzyme as well as the deglycosylated product in a western blot experiment. The enzyme in the extracts of different tissues can also be quantified by ELISA. We have further evaluated the binding of purified starfish cathepsin D with its receptor, MPR 300 (mannose 6-phosphate receptor) by immunoprecipitation. Cross-linking experiments using purified cathepsin D and MPR 300 revealed a cross-linked product that migrated with a higher molecular mass (345 kDa) compared to the enzyme (45 kDa). Furthermore the specificity of this interaction was also tested in a ligand blot experiment.  相似文献   

17.
Cathepsin X is a lysosomal carboxypeptidase with a potential role in processes of inflammation and immune response. The integrin-binding motifs RGD and ECD, present in the pro- and in mature forms of cathepsin X, respectively, suggest that this enzyme might have a function in cell signaling and adhesion. In this study, we report that cysteine protease inhibitors E-64 and CA-074 and 2F12 monoclonal antibody, all of which inhibit cathepsin X activity, significantly reduced adhesion of differentiated U-937 cells to polystyrene- and fibrinogen-coated surfaces via Mac-1 integrin receptor, whereas their binding to vitronectin, fibronectin or Matrigel was not affected. On the other hand, cathepsin X, added to differentiating U-937 cells, stimulated their adhesion. Using confocal microscopy, we demonstrated that the pro-form of cathepsin X was co-localized with beta(2) and beta(3) integrin subunits and its mature form solely with the beta(2) integrin subunit with the most intense signal in cell-cell junctions in differentiated U-937 cells and in co-cultures with endothelial cells. Our results indicate that active cathepsin X mediates the function of beta(2) integrin receptors during cell adhesion and that it could also be involved in other processes associated with beta(2) integrin receptors such as phagocytosis and T cell activation.  相似文献   

18.
Cathepsin B is a cystein proteinase scarcely studied in crustaceans. Its function has not been clearly described in shrimp species belonging to the sub-order Dendrobranchiata, which includes the white shrimp Litopenaeus vannamei and other species from the Penaeidae family. Studies on vertebrates suggest that these lysosomal enzymes intracellularly hydrolize protein, as other cystein proteinases. However, the expression of the gene encoding the shrimp cathepsin B in the midgut gland was affected by starvation in a similar way as other digestive proteinases which extracellularly hydrolyze food protein. In this study the white shrimp L. vannamei cathepsin B (LvCathB) cDNA was sequenced, and characterized. Its gene expression was evaluated in various shrimp tissues, and changes in the mRNA amounts were compared with those observed on other digestive proteinases from the midgut gland during starvation. By using qRT-PCR it was found that LvCathB is expressed in most shrimp tissues except in pleopods and eye stalk. Changes on LvCathB mRNA during starvation suggest that the enzyme participates during intracellular protein hydrolysis but also, after food ingestion, it participates in hydrolyzing food proteins extracellularly as confirmed by the high activity levels we found in the gastric juice and midgut gland of the white shrimp.  相似文献   

19.
Immunocytochemical localization of two distinct intracellular aspartic proteinases, cathepsins E and D, in human gastric mucosal cells and various rat cells was investigated by immunogold technique using discriminative antibodies specific for each enzyme. Cathepsin D was exclusively confined to primary or secondary lysosomes in almost all the cell types tested, whereas cathepsin E was not detected in the lysosomal system. The localization of cathepsin E varied with different cell types. Microvillous localization of cathepsin E was found in the intracellular canaliculi of human and rat gastric parietal cells, rat renal proximal tubule cells, and the bile canaliculi of rat hepatic cells. The immunolocalization of each enzyme in gastric cells were essentially the same in humans and rats. In the gastric feveolar epithelial cells and parietal cells, definite immunolabeling for cathepsin E was observed in the cytoplasmic matrix, the cisternae of the rough endoplasmic reticulum, and the dilated perinuclear envelope. In rat kidney, cathepsin E was detected only in the proximal tubule cells, while cathepsin D was found mainly in the lysosomes of the distal tubule cells but not in those of the proximal tubule cells. These results clearly indicate the distinct intracytoplasmic localization of cathepsins E and D and suggest the possible involvement of cathepsin E in extralysosomal proteolysis that is related to specialized functions of each cell type.  相似文献   

20.
Cathepsin H is involved in intracellular protein degradation and is implicated in a variety of physiological processes such as proenzyme activation, enzyme inactivation, hormone maturation, tissue remodeling, and bone matrix resorption. A model of the tertiary structure of the human lysosomal cysteine protease cathepsin H was constructed. The protein structure was built from its amino acid sequence and its homology to papain, actinidin, and cathepsin L for which crystallographic co-ordinates are available. The model was generated using the COMPOSER module of SYBYL.The position and interaction behavior of the so called mini-chain, the octapeptide EPQNCSAT, to the active-site cleft of cathepsin H could be determined by docking studies. Refinement was achieved through interactive visual and algorithmic analysis and minimization with the TRIPOS force field. The model was found to correlate with observed empirical data regarding ligand specificity. The model defines possible steric, hydrophobic, and electrostatic interactions. We anticipate that the model will serve as a tool to understand substrate specificity and may be used for the development of new specific ligands.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s008940050117  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号