首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A U(VI) reduction-deficient mutant (Urr) screening technique was developed and combined with chemical mutagenesis procedures to identify a Urr mutant of Shewanella putrefaciens strain 200. The Urr mutant lacked the ability to grow anaerobically on U(VI) and NO(2)(-), yet retained the ability to grow anaerobically on eight other compounds as terminal electron acceptor. All 11 members of previously isolated sets of Fe(III) and Mn(IV) reduction-deficient mutants of S. putrefaciens 200 displayed Urr-positive phenotypes with the Urr screen and were capable of anaerobic growth on U(VI). This is the first reported isolation of a respiratory mutant that is unable to grow anaerobically on U(VI) as terminal electron acceptor.  相似文献   

2.
The susceptibility of various bacteriogenic iron oxides (BIOS) to bacterial Fe(III) reduction was examined. Reduction resulted in complete dissolution of the iron mineral from the surfaces of the Fe-oxidizing consortium. Reduction rates were compared to that of synthetic ferrihydrite (HFO). The reduction rate of HFO (0.162 day? 1) was significantly lower than that of Äspö (Gallionella dominated) BIOS (0.269 day? 1). Two Canadian (Leptothrix dominated) BIOS samples showed statistically equivalent rates of reduction (0.541 day?1 and 0.467 day? 1), which were higher than both Äspö BIOS and HFO. BIOS produced by different iron-oxidizing genera have different susceptibilities to microbial reduction.  相似文献   

3.
Abstract Mutants of Shewanella putrefaciens MR-1 deficient in menaquinone and methylmenaquinone, but which have wild-type levels of ubiquinone, retain the ability to use trimethylamine N -oxide as an electron acceptor, but they lose the ability to use nitrate, iron(III), and fumarate as electron acceptors. These mutants also show a reduced rate of manganese(IV) reduction. One of these mutants could be restored to essentially wild-type phenotype by supplementing the medium with 1,4-dihydroxy-2-naphthoic acid. A requirement for naphthoquinones in iron(III) reduction and a preference for naphthoquinones in manganese(IV) reduction provide further support that the metal reducing systems in MR-1 are linked to anaerobic respiration.  相似文献   

4.
5.
The ability of S. putrefaciens to reduce Fe(III) complexed by a variety of ligands has been investigated. All of the ligands tested caused the cation to be more susceptible to reduction by harvested whole cells than when uncomplexed, although some complexes were more readily reduced than others. Monitoring rates of reduction by a ferrozine assay for Fe(II) formation proved inadequate using Fe(III) ligands giving Fe(II) complexes of low kinetic lability (e.g. EDTA). A more suitable assay for Fe(III) reduction in the presence of such ligands proved to be the observation of associated cytochrome oxidation and re-reduction. Where possible, an assay for Fe(III) reduction based upon the disappearance of Fe(III) complex was also employed. Reduction of all Fe(III) complexes tested was totally inhibited by the presence of O2, partially inhibited by HQNO and slower in the absence of a physiological electron donor. Upon cell fractionation, Fe(III) reductase activity was detected exclusively in the membranes. Using different physiological electron donors in assays on membranes, relative reduction rates of Fe(III) complexes complemented the data from whole cells. The differences in susceptibility to reduction of the various complexes are discussed, as is evidence for the respiratory nature of the reduction.  相似文献   

6.
AIM: To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 have distinct or overlapping roles in the reduction of insoluble manganese(IV) oxide. METHODS AND RESULTS: The gene replacement mutant (OMCA1) which lacks OmcA was partially deficient in Mn(IV) reduction. Complementation of OMCA1 with a vector (pVK21) that contains omcB but not omcA restored Mn(IV) reduction to levels that were even greater than those of wild-type. Examination of the OM of OMCA1/pVK21 revealed greater than wild-type levels of OmcB protein and specific haem content. CONCLUSIONS: Overexpression of OmcB can compensate for the absence of OmcA in the reduction of insoluble Mn(IV) oxides. Therefore, there is at least a partial overlap in the roles of these OM cytochromes in the reduction of insoluble Mn(IV) oxide. SIGNIFICANCE: The overlapping roles of these two cytochromes has important implications for understanding the mechanism by which MR-1 reduces insoluble metal oxides. There is no obligatory sequential electron transfer from one cytochrome to the other. They could both potentially serve as terminal reductases for extracellular electron acceptors.  相似文献   

7.
Tamarind fruit shell (TFS) was converted to a cation exchanger (PGTFS-SP-COOH) having a carboxylate functional group at the chain end by grafting poly(hydroxyethylmethacrylate) onto TFS (a lignocellulosic residue) using potassium peroxydisulfate-sodium thiosulfate redox initiator, and in the presence of N, N ′-methylenebisacrylamide as a cross-linking agent, followed by functionalization. The chemical modification was investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and potentiometric titrations. The feasibility of PGTFS-SP-COOH for the removal of heavy metals such as U(VI), Cu(II), Zn(II), and Co(II) ions from aqueous solutions was investigated by batch process. The optimum pH range for the removal of meal ions was found to be 6.0. For all the metal ions, equilibrium was attained within 2 h. The kinetic and isotherm data, obtained at optimum pH value 6.0, could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. The Sips maximum adsorption capacity for U(VI), Cu(II), Zn(II), and Co(II) ions at 30°C was found to be 100.79, 65.69, 65.97, and 58. 81 mg/g, respectively. Increase of ionic strength decreased the metal ion adsorption. Different wastewater samples were treated with PGTFS-SP-COOH to demonstrate its efficiency in removing metal ions from wastewater. The adsorbed metal ions on PGTFS-SP-COOH can be recovered by treating with 1.0 M NaCl + 0.5 M HCl for U(VI) ions and 0.2 M HCl for Cu(II), Co(II), and Zn(II) ions. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that PGTFS-SP-COOH developed in this study exhibited considerable adsorption potential for the removal of U(VI), Cu(II), Zn(II), and Co(II) ions from water and wastewaters.  相似文献   

8.
Iron(III)-uptake mechanisms in bacteria indigenous to the Antarctic, which is the most Fe-deficient continent on Earth, have not been extensively studied. The cold-adapted, Antarctic bacterium, Shewanella gelidimarina, does not produce detectable levels of the siderophore, putrebactin, in the supernatant of Fe(III)-deprived cultures. This is distinct from the putrebactin-producing bacterium from the same genus, Shewanella putrefaciens, which is adapted to middle-range temperatures. The production of putrebactin by S. putrefaciens is optimal, when the pH value of the medium is 7.0. According to the strong positive response from whole cells in the Chrome Azurol S (CAS) agar diffusion assay, Shewanella gelidimarina appears to produce cell-associated siderophores. In the RP-HPLC trace of an Fe(III)-loaded extract from the cell-associated components of S. gelidimarina cultured in media with [Fe(III)] ca. 0 microM, a peak appears at [MeCN] ca. 77%, which decreases in intensity in a parallel experiment in which [Fe(III)] ca. 5 microM, and is barely detectable in Fe(III)-replete media ([Fe(III)] ca. 20 microM). The Fe(III)-dependence of this peak suggests that the attendant species, which is significantly more hydrophobic than putrebactin (RP-HPLC elution: [MeCN] ca. 14%), is associated with Fe(III)-management in S. gelidimarina. This study highlights the diversity in Fe(III)-uptake mechanisms in Shewanella species adapted to different environmental and thermal niches.  相似文献   

9.
Shewanella putrefaciens strain 200 respires anaerobically on a wide range of compounds as the sole terminal electron acceptor, including ferric iron [Fe(III)] and manganese oxide [Mn(IV)]. Previous studies demonstrated that a 23.3-kb S. putrefaciens wild-type DNA fragment conferred metal reduction capability to a set of respiratory mutants with impaired Fe(III) and Mn(IV) reduction activities (T. DiChristina and E. DeLong, J. Bacteriol. 176:1468-1474, 1994). In the present study, the smallest complementing fragment was found to contain one open reading frame (ORF) (ferE) whose translated product displayed 87% sequence similarity to Aeromonas hydrophila ExeE, a member of the PulE (GspE) family of proteins found in type II protein secretion systems. Insertional mutants E726 and E912, constructed by targeted replacement of wild-type ferE with an insertionally inactivated ferE construct, were unable to respire anaerobically on Fe(III) or Mn(IV) yet retained the ability to grow on all other terminal electron acceptors. Nucleotide sequence analysis of regions flanking ferE revealed the presence of one partial and two complete ORFs whose translated products displayed 55 to 70% sequence similarity to the PulD, -F, and -G homologs of type II secretion systems. A contiguous cluster of 12 type II secretion genes (pulC to -N homologs) was found in the unannotated genome sequence of Shewanella oneidensis (formerly S. putrefaciens) MR-1. A 91-kDa heme-containing protein involved in Fe(III) reduction was present in the peripheral proteins loosely attached to the outside face of the outer membrane of the wild-type and complemented (Fer+) B31 transconjugates yet was missing from this location in Fer mutants E912 and B31 and in uncomplemented (Fer-) B31 transconjugates. Membrane fractionation studies with the wild-type strain supported this finding: the 91-kDa heme-containing protein was detected with the outer membrane fraction and not with the inner membrane or soluble fraction. These findings provide the first genetic evidence linking dissimilatory metal reduction to type II protein secretion and provide additional biochemical evidence supporting outer membrane localization of S. putrefaciens proteins involved in anaerobic respiration on Fe(III) and Mn(IV).  相似文献   

10.
Cyclic voltammetry demonstrated that cells of Shewanella putrefaciens grown under anaerobic conditions without nitrate were electrochemically active. The electrochemical activity was inactivated reversibly by exposure to air, but not by nitrate. Lactate and an applied potential at +200 mV against an Ag/AgCl reference electrode restored the electrochemical activity. These findings can be used to improve the performance of a mediator-less microbial fuel cell using electrochemically active bacteria in the presence of nitrate.  相似文献   

11.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

12.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

13.
BioMetals - In this report 5 compounds were synthesized and structural and their photophysical characterization was performed (ΦΔ and Φf). Furthermore, in this in vitro study, their...  相似文献   

14.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

15.
Plasma membrane proteolipid (plasmolipin), which was originally isolated from kidney membranes, has also been shown to be present in brain. In this study, we examined the distribution of plasmolipin in brain regions, myelin, and oligodendroglial membranes. Immunoblot analysis of different brain regions revealed that plasmolipin levels were higher in regions rich in white matter. Plasmolipin was also detected in myelin, myelin subfractions, and oligodendroglial membranes. Immunocytochemical analysis of the cerebellum revealed that plasmolipin was localized in the myelinated tracts. Plasmolipin levels in myelin were enriched during five successive cycles of myelin purification, similar to the enrichment of myelin proteolipid apoprotein (PLP) and myelin basic protein (MBP). In contrast, levels of Na+,K(+)-ATPase and a 70-kDa protein were decreased. When myelin or white matter was extracted with chloroform/methanol, it contained, in addition to PLP, a significant amount of plasmolipin. Quantitative immunoblot analysis suggested that plasmolipin constitutes in the range of 2.2-4.8% of total myelin protein. Plasmolipin, purified from kidney membranes, was detected by silver stain on gels at 18 kDa and did not show immunological cross-reactivity with either PLP or MBP. Thus, it is concluded that plasmolipin is present in myelin, possibly as a component of the oligodendroglial plasma membrane, but is structurally and immunologically different from the previously characterized myelin proteolipids.  相似文献   

16.
Erythropoietin (EPO) is a glycoprotein hormone which belongs to the four-helical-bundle cytokine family and regulates the level of circulating red blood cells. The EPO receptor (EPOR) belongs to the cytokine-receptor family of proteins. While many of the downstream events following receptor/ligand interaction have been defined, both ligand-induced receptor dimerization and conformational changes induced by binding have been implicated as the initial step in signal transduction. In a recent paper [Philo et al. (1996), Biochemistry 38, 1681–1691] we described the formation of both 1:1 and 2:1 EPOR/EPO complexes. In this paper, we examine changes in protein conformation and stability resulting from the formation of both 1:1 and 2:1 complexes of the soluble extracellular domain of EPOR and the recombinant EPO derived from either Chinese hamster ovary cells or from Escherichia coli cells. Occupation of the first binding site results in a slight conformational change that is apparent in both the far- and near-UV circular dichroism spectra. Formation of the 2:1 complex results in an even greater change in conformation which involves the local environment of one or more aromatic amino acids, accompanied perhaps by a small increase in helical content of the complex. This change in local conformation could occur in the EPO molecule, in the EPOR, in both EPOR molecules due to dimerization, or in all molecules in the trimer. The 1:1 complex exhibits increased stability to thermal-induced denaturation relative to the individual protein component; indeed, the E. coli-derived (nonglycosylated) EPO stays folded in the complex at temperatures where the EPO alone would have unfolded and precipitated. Glycosylation of the receptor increases the reversibility of thermal denaturation, but does not affect the temperature at which this unfolding reaction occurs.  相似文献   

17.
Biosorption is a surface-dependent phenomenon. Surface modifications by chemical treatment methods could either improve or reduce the biosorption capacity of potential biosorbents. In the present work, pristine Pteris vittata L. pinnae (PPV) powder was treated separately with sodium hydroxide (NaOH), calcium chloride (CaCl2), and nitric acid (HNO3). The pristine and treated biosorbents were used to assess the biosorption of Pb(II), Cd(II), and Cr(VI) as a function of pH. Kinetics and adsorption isotherms were studied. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscope combined with energy dispersive x-ray (SEM-EDX) spectroscopic techniques were used to characterize the biosorbents before and after chemical treatments. The possible functional groups contributing to the metal sorption were identified. Results revealed favorable biosorption of Pb(II), Cd(II), and Cr(VI) described by pseudo-second order kinetics. NaOH-treated P. vittata (NPV) showed higher biosorption capacity for Pb(II) and Cd(II) compared to that of PPV. ATR-FTIR studies indicated that -OH, -COOH, and -NH2 groups were mainly involved in Cr(VI) and -OH in Pb(II) and Cd(II) biosorption. The enhanced efficiency of NPV and CaCl2 treated P. vittata (CPV) in the uptake of Pb(II) and Cd(II) compared to PPV can be associated with their altered physicochemical characters.  相似文献   

18.
The reduction kinetics of Fe(III)citrate, Fe(III)NTA, Co(III)EDTA-, U(VI)O(2) (2+), Cr(VI)O(4) (2-), and Tc(VII)O(4) (-) were studied in cultures of dissimilatory metal reducing bacteria (DMRB): Shewanella alga strain BrY, Shewanella putrefaciens strain CN32, Shewanella oneidensis strain MR-1, and Geobacter metallireducens strain GS-15. Reduction rates were metal specific with the following rate trend: Fe(III)citrate > or = Fe(III)NTA > Co(III)EDTA- > UO(2)(2+) > CrO(4)(2-) > TcO(4)(-), except for CrO(4) (2-) when H(2) was used as electron donor. The metal reduction rates were also electron donor dependent with faster rates observed for H(2) than lactate- for all Shewanella species despite higher initial lactate (10 mM) than H2 (0.48 mM). The bioreduction of CrO(4) (2-) was anomalously slower compared to the other metals with H(2) as an electron donor relative to lactate and reduction ceased before all the CrO(4)(2-) had been reduced. Transmission electron microscopic (TEM) and energy-dispersive spectroscopic (EDS) analyses performed on selected solids at experiment termination found precipitates of reduced U and Tc in association with the outer cell membrane and in the periplasm of the bacteria. The kinetic rates of metal reduction were correlated with the precipitation of reduced metal phases and their causal relationship discussed. The experimental rate data were well described by a Monod kinetic expression with respect to the electron acceptor for all metals except CrO(4)(2-), for which the Monod model had to be modified to account for incomplete reduction. However, the Monod models became statistically over-parameterized, resulting in large uncertainties of their parameters. A first-order approximation to the Monod model also effectively described the experimental results, but the rate coefficients exhibited far less uncertainty. The more precise rate coefficients of the first-order model provided a better means than the Monod parameters, to quantitatively compare the reduction rates between metals, electron donors, and DMRB species.  相似文献   

19.
The active site of sulfite oxidase has been investigated by X-ray absorption spectroscopy at the molybdenum K-edge at 4 K. We have investigated all three accessible molybdenum oxidation states, Mo(IV), Mo(V), and Mo(VI), allowing comparison with the Mo(V) electron paramagnetic resonance data for the first time. Quantitative analysis of the extended X-ray absorption fine structure indicates that the Mo(VI) oxidation state possesses two terminal oxo (Mo = O) and approximately three thiolate-like (Mo-S-) ligands and is unaffected by changes in pH and chloride concentration. The Mo(IV) and Mo(V) oxidation states, however, each have a single oxo ligand plus one Mo-O- (or Mo-N less than) bond, most probably Mo--OH, and two to three thiolate-like ligands. Both reduced forms appear to gain a single chloride ligand under conditions of low pH and high chloride concentration.  相似文献   

20.
Abstract

The formation constants of ternary complexes of title systems have been determined pH-metrically in biologically relevant conditions at an ionic strength of 0.16 mol dm-3 and 303 K. The overall stability constants have been evaluated using MINIQUAD75 computer program. The complexation equilibria have been derived on the basis of species distribution diagram. In the present study L-Dopa and 1, 10-phenanthroline are found to be compatible ligands, proving greater stability of ternary complexes as compared to binary ones. The trend in variation of stability constants with change in dielectric constant of medium is explained on the basis of electrostatic and non-electrostatic forces. Distributions of the species with pH at different compositions of propanediol-water mixtures are also presented. The factors responsible for the compatibility of both the ligands have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号