首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

2.
Methanogenesis, sulfate reduction, and rates of carbon mineralization were determined for samples derived at different depths from four cores drilled at the Savannah River Plant, Aiken South Carolina. Three‐gram subsamples of the sediments were dispensed to 10‐mL serum bottles under 5% H2/95% N2 and amended with 0.5 mL degassed distilled water with or without the following solutes: formate plus acetate, bicarbonate, lactate, and radiolabeled sulfate, glucose, and Índole. After incubating 1 to 5 days, the sediments were assayed for methane, H2, 35S, and I4CO2. No methanogenesis was detected at any depth in any core and sulfate was rarely reduced. Evolution of 14CO2 from glucose and indole was detected in sediments as deep as 262 and 259 m, respectively. At some depths the 14CO2 evolution rate was comparable to that of surface soils; however, at other depths no 14CO2 evolution could be detected. Injection of sterile air into anaerobic incubations increased rates of carbon mineralization at all depths that had demonstrated anaerobic activity and stimulated mineralization activity in sediments that were inactive anaerobically, suggesting a predominance of aerobic metabolism. Increasing the concentration of added glucose and indole often increased the resulting rates of 14CO2 evolved from these substrates. Our data indicate that both aerobic and anaerobic microorganisms are present and metabolically active in samples from deep subsurface environments.  相似文献   

3.
Anaerobic microorganisms were enumerated and metabolic activities measured in deep Coastal Plain sediments sampled from three water‐bearing formations at depths down to 300 m. Aseptically obtained sediment cores harbored the potential for anaerobic biodegradation of various substrates in almost all samples. Although the sediments were not predominantly anaerobic, viable methanogens and sulfate‐reducing bacteria (SRB) were present almost throughout the depth profile. Coliform organisms were also found at various locations, but were not recoverable from drilling muds or water used to slurry the muds. The anaerobic metabolism of lactate and formate was easily detected in most samples. However, acetate and benzoate were degraded only in portions of the subsurface that harbored methanogens. The water‐saturated transmissive zones harbored the highest numbers of SRB and the potential for the widest variety of anaerobic metabolic activities. Small or negligible anaerobic microbial activity was associated with thick clay layers. The accumulation of acetate and the production of methane in samples not amended with exogenous organic matter demonstrated that some strata contained reserves of fermentable carbon and suggested that environmental factors or nutrients other than carbon were potentially limiting in situ microbial activity.  相似文献   

4.
The quantitation and characterization of indigenous bacteria of a deep aquifer, located in the southwestern United States and contaminated with halogenated aliphatic compounds, was undertaken. Water samples were obtained aseptically from depths of 45 to 151 m from four sites that ranged from 260 to 1,800 m in distance from the location of contaminant release. Sediment samples were also obtained from the proximal and distal sites for analyses. Results for aerobic and anaerobic colony-forming units were obtained on four agar media that were used to retrieve heterotrophs, oligotrophs, and pseudomonads. Most probable number estimates were obtained from a liquid medium favorable for oligotrophs. Representative isolates were tested against Biolog plates (Biolog, Inc., Hayward, Calif.) for patterns of carbon source utilization. Of 103 Gram-negative (GN) isolates, 48 could not be identified and the others were only tentatively identified via the Biolog database, and none of the 35 Gram-positive (GP) isolates were identifiable. However, the metabolic patterns were subjected to average cluster linkage analyses; the GN and GP bacteria were separable into eight and four groups, respectively. The oligotroph group comprised one-third of the GN and one-half of the GP isolates. The consensus carbon source utilization pattern for each group was determined and will be useful in future characterization of additional aquifer bacterial isolates. Although predominantly aerobic and oligotrophic, the microbial community of this aquifer was highly diverse with discernible viability and metabolic features of the microbiota distinctive to each of the four water and two sediment samples.Correspondence to: C.M. McCarthy.  相似文献   

5.

Background  

Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.  相似文献   

6.
Geisel N  Vilar JM  Rubi JM 《PloS one》2011,6(4):e18622
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.  相似文献   

7.
The Everglades in South Florida are a unique ecologicalsystem. As a result of the widespread use of pesticides andherbicides in agricultural areas upstream from these wetlands,there is a serious potential for pollution problems in theEverglades. The purpose of this study was to evaluate theability of indigenous microbial populations to degradexenobiotic organic compounds introduced by agricultural andother activities. Such biodegradation may facilitate theremediation of contaminated soils and water in the Everglades.The model compound selected in this study is 4-nitrophenol, achemical commonly used in the manufacture of pesticides. Themineralization of 4-nitrophenol at various concentrations wasstudied in soils collected from the Everglades. Atconcentrations of 10 and 100 µg/g soil, considerablemineralization occurred within a week. At a higherconcentration, i.e., 10 mg/g soil, however, no mineralizationof 4-nitrophenol occurred over a 4-month period; such a highconcentration apparently produced an inhibitory effect. Therate and extent of 4-nitrophenol mineralization was enhancedon inoculation with previously isolated nitrophenol-degradingmicroorganisms. The maximum mineralization extent measured,however, was less than 30% suggesting conversion to biomassand/or unidentified intermediate products. These resultsindicate the potential for natural mechanisms to mitigate theadverse effects of xenobiotic pollutants in a complex systemsuch as the Everglades.  相似文献   

8.
Laha S  Petrova KP 《Biodegradation》1997,8(5):349-356
The Everglades in South Florida are a unique ecological system. As a result of the widespread use of pesticides and herbicides in agricultural areas upstream from these wetlands, there is a serious potential for pollution problems in the Everglades. The purpose of this study was to evaluate the ability of indigenous microbial populations to degrade xenobiotic organic compounds introduced by agricultural and other activities. Such biodegradation may facilitate the remediation of contaminated soils and water in the Everglades. The model compound selected in this study is 4-nitrophenol, a chemical commonly used in the manufacture of pesticides. The mineralization of 4-nitrophenol at various concentrations was studied in soils collected from the Everglades. At concentrations of 10 and 100 microg/g soil, considerable mineralization occurred within a week. At a higher concentration, i.e., 10 mg/g soil, however, no mineralization of 4-nitrophenol occurred over a 4-month period; such a high concentration apparently produced an inhibitory effect. The rate and extent of 4-nitrophenol mineralization was enhanced on inoculation with previously isolated nitrophenol-degrading microorganisms. The maximum mineralization extent measured, however, was less than 30% suggesting conversion to biomass and/or unidentified intermediate products. These results indicate the potential for natural mechanisms to mitigate the adverse effects of xenobiotic pollutants in a complex system such as the Everglades.  相似文献   

9.
Undecompressed microbial populations from the deep sea.   总被引:2,自引:5,他引:2       下载免费PDF全文
Metabolic transformations of glutamate and Casamino Acids by natural microbial populations collected from deep waters (1,600 to 3,100 m) were studied in decompressed and undecompressed samples. Pressure-retaining sampling/incubation vessels and appropriate subsampling/incubation vessels and appropriate subsampling techniques permitted time course experiments. In all cases the metabolic activity in undecompressed samples was lower than it was when incubated at 1 atm. Surface water controls showed a reduced activity upon compression. The processes involving substrate incorporation into cell material were more pressure sensitive than was respiration. The low utilization of substrates, previously found by in situ incubations for up to 12 months, was confirmed and demonstrated to consist of an initial phase of activity, in the range of 5 to 60 times lower than the controls, followed by a stationary phase of virtually no substrate utilization. No barophilic growth response (higher rates at elevated pressure than at 1 atm) was recorded; all populations observed exhibition various degrees of barotolerance.  相似文献   

10.
In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 mumol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 mumol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
J. ZHOU, S. LIU, B. XIA, C. ZHANG, A.V. PALUMBO AND T.J. PHELPS. 2001 .
Aims: The objectives of this work were to explore the diversity in Fe (III)-reducing enrichment cultures from the deep subsurface and to identify strains involved in metal reduction.
Methods and Results: Analyses of 16S ribosomal RNA (rRNA) of enrichments, supplemented with hydrogen, acetate or pyruvate as an electron donor, identified three dominant operational taxonomic units (OTUs). All cultures exhibited considerable diversity (36–24 OTUs), even after being transferred at least nine times. Two OTUs were present in all three cultures, constituting about 65% of the total clones examined.
Conclusions: Dominant OTUs appeared to be most closely related to Thermoanaerobacter ethanolicus or T. kivui . One OTU, which is potentially responsible for autotrophic Fe (III) reduction, was only about 95% similar to T. ethanolicus and may represent a new species.
Significance and Impact of the Study: An unexpectedly high diversity was found in these enrichments and this diversity may be a feature that can be exploited.  相似文献   

12.
AIMS: The objectives of this work were to explore the diversity in Fe (III)-reducing enrichment cultures from the deep subsurface and to identify strains involved in metal reduction. METHODS AND RESULTS: Analyses of 16S ribosomal RNA (rRNA) of enrichments, supplemented with hydrogen, acetate or pyruvate as an electron donor, identified three dominant operational taxonomic units (OTUs). All cultures exhibited considerable diversity (36-24 OTUs), even after being transferred at least nine times. Two OTUs were present in all three cultures, constituting about 65% of the total clones examined. CONCLUSION: Dominant OTUs appeared to be most closely related to Thermoanaerobacter ethanolicus or T. kivui. One OTU, which is potentially responsible for autotrophic Fe (III) reduction, was only about 95% similar to T. ethanolicus and may represent a new species. SIGNIFICANCE AND IMPACT OF THE STUDY: An unexpectedly high diversity was found in these enrichments and this diversity may be a feature that can be exploited.  相似文献   

13.
We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging to the IncP-1beta group. The abundance of merA and IncP-1 plasmid carrying populations increased, after new mercury exposure, which could be the result of selection as well as horizontal gene exchange. The data in this study suggest a role for IncP-1 plasmids in the acclimation to mercury of surface as well as subsurface soil microbial communities.  相似文献   

14.
S Fan  K M Scow 《Applied microbiology》1993,59(6):1911-1918
The biodegradation of trichloroethylene (TCE) and toluene, incubated separately and in combination, by indigenous microbial populations was measured in three unsaturated soils incubated under aerobic conditions. Sorption and desorption of TCE (0.1 to 10 micrograms ml-1) and toluene (1.0 to 20 micrograms ml-1) were measured in two soils and followed a reversible linear isotherm. At a concentration of 1 micrograms ml-1, TCE was not degraded in the absence of toluene in any of the soils. In combination, both 1 microgram of TCE ml-1 and 20 micrograms of toluene ml-1 were degraded simultaneously after a lag period of approximately 60 to 80 h, and the period of degradation lasted from 70 to 90 h. Usually 60 to 75% of the initial 1 microgram of TCE ml-1 was degraded, whereas 100% of the toluene disappeared. A second addition of 20 micrograms of toluene ml-1 to a flask with residual TCE resulted in another 10 to 20% removal of the chemical. Initial rates of degradation of toluene and TCE were similar at 32, 25, and 18 degrees C; however, the lag period increased with decreasing temperature. There was little difference in degradation of toluene and TCE at soil moisture contents of 16, 25, and 30%, whereas there was no detectable degradation at 5 and 2.5% moisture. The addition of phenol, but not benzoate, stimulated the degradation of TCE in Rindge and Yolo silt loam soils, methanol and ethylene slightly stimulated TCE degradation in Rindge soil, glucose had no effect in either soil, and dissolved organic carbon extracted from soil strongly sorbed TCE but did not affect its rate of biodegradation.  相似文献   

15.
Surface microbiological investigations are critically dependent on the procedures used to collect samples for study. It can be difficult to distinguish between indigenous organisms and those encountered as contaminants during the drilling process. We found that coliform bacteria contaminated drilling mud slurries. These bacteria proved useful as tracer organisms in evaluating the degree of microbial contamination accidentally encountered while drilling for subterranean samples. While these organisms were found in high numbers in both the circulating muds and in the mud reservoir, few subsurface samples harbored conforms. Subsurface slurries did not inhibit the growth of a known coliform inoculum. These results indicate that the methods used to collect and field‐process cores from Atlantic coastal plain sediments were sufficient to prevent a large degree of bacterial contamination in most samples. The microflora in drilling fluids did not quantitatively or qualitatively account for the number and diversity of bacteria in subsurface samples. We conclude that a large and viable bacterial community is present in deep regions of the terrestrial subsurface.  相似文献   

16.
Abstract An isolate of Pseudomonas aureofaciens from the phylloplane of sugar beet which was chromosomally modified for monitors purposes by the insertion of two gene cassettes (kmr- xyl E and lac ZY) was introduced to the phytosphere of spring wheat in a number of experiments and the resulting microbial perturbations quantified. Such studies involving innocuous bacterial isolates can serve as a guide in the assessment of risk associated with the release of functionally modified microorganisms. Introductions of P. aureofaciens on seeds caused large microbial perturbations (up to 2 log units) at the seedling stage on seeds and roots. As the inoculated plants matured (tillering, flowering and ripening), perturbations of total microbial populations were found to be non-significant. Microbial perturbation on maturing wheat roots as a result of seed inoculations with P. aureofaciens could only be detected using more sensitive monitoring procedures describing the Pseudomonas community in terms of colony appearance rate on a selective Pseudomonas medium. Spray applications of the marked P. aureofaciens isolate onto the leaf surface of wheat caused no significant perturbations of the indigenous microbial present on the phylloplane.  相似文献   

17.
Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C $ {\text{g}}^{ - 1}_{\text{dry soil}} $ . The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.  相似文献   

18.
A survey of soil gases associated with gasoline stations on theSwan Coastal Plain of Western Australia has shown that 20% leak detectable amountsof petroleum. The fates of volatile hydrocarbons in the vadose zone at one contaminatedsite, and dissolved hydrocarbons in groundwater at another site were followed in anumber of studies which are herein reviewed. Geochemical evidence from a plume ofhydrocarbon-contaminated groundwater has shown that sulfate reduction rapidly developedas the terminal electron accepting process. Toluene degradation but not benzene degradationwas linked to sulfate reduction. The sulfate-reducing bacteria isolated from the plumerepresented a new species, Desulfosporosinus meridiei. Strains of the speciesdo not mineralise 14C-toluene in pure culture. The addition of large numbersof cells and sulfate to microcosms did stimulate toluene mineralisation but not benzenemineralisation. Attempts to follow populations of sulfate-reducing bacteria byphospholipid signatures, or Desulfosporosinus meridiei by FISH in the plume were unsuccessful, but fluorescently-labeled polyclonal antibodies were successfully used.In the vadose zone at a different site, volatile hydrocarbons were consumed in thetop 0.5 m of the soil profile. The fastest measured rate of mineralisation of 14C-benzenein soils collected from the most active zone (6.5 mg kg-1 day-1) could accountfor the majority of the flux of hydrocarbon vapour towards the surface. The studiesconcluded that intrinsic remediation by subsurface microbial populations in groundwateron the Swan Coastal Plain can control transport of aromatic hydrocarbon contamination,except for the transport of benzene in groundwater. In the vadose zone, intrinsicremediation by the microbial populations in the soil profile can contain the transportof aromatic hydrocarbons, provided the physical transport of gases, inparticular oxygen from the atmosphere, is not impeded by structures.  相似文献   

19.
Extreme acidophiles (microorganisms with pH optima of 相似文献   

20.
The major process that reduces nitrate levels in soils and water is denitrification, which converts nitrate and nitrite into gaseous forms of nitrogen, which are then released into the atmosphere. This study used membrane inlet mass spectrometry (MIMS) to investigate denitrification in river water bacterial isolates supplied with nitrate and succinate as an energy source as well as in the total population by provision of different carbon compounds to untreated river water samples. Substantial variation was observed in the gases detected with nitrogen, nitrous oxide and nitric oxide all being produced by one or more of the isolates. The indigenous river population as a whole was found to respond very differently to the addition of different carbon sources. Peak nitrogen levels differed by nearly 1 mmol 1(-1) and nitrous oxide by approximately 0.5 mmol 1(-1) depending on which carbon source was supplied. Nitric oxide was only detected when glycerol was supplied as the carbon source. These results demonstrate the complex interactions involved in nitrogen cycling and suggest that with careful management it may be possible to stimulate particular consortia of micro-organisms to reduce more nitrate to harmless nitrogen rather than nitrous oxide, a known greenhouse gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号