首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Microbial biofilms preferentially colonized pyrite surfaces of black shale incubated in groundwater in the Newark Basin (northeastern United States) for 1 month. SEM observation revealed the co-occurrence of bacteria-shaped pits and secondary iron minerals on pyrite, which indicate biological involvement in pyrite weathering and secondary solid formation. Of the 24 16S rDNA sequences obtained from bacterial communities on pyrite, arsenopyrite and quartz sand, 22 belonged to the phylum proteobacteria, including 5 identified as β or ?-proteobacteria capable of oxidizing iron or sulfur, 16 identified as members of the Fe(III)-reducing Geobacteraceae in the δ-proteobacteria and one identified as the Fe(III)-reducing Ferribacterium. Results indicate that microbes play an essential role in the oxidation of iron sulfides (via direct contact and indirect pathways) and the reduction of iron oxides in pyrite-bearing substrata of a slightly acidic black shale aquifer.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The Biology of Cyanobacteria. N. G. Carr and B. A. Whitton (eds.). Botanical Monographs, Vol. 19. Blackwell Scientific Publications, Oxford, U.K., 1982 (also University of California Press), xi + 688 pp., $75.00 (U.S.); £42.00 sterling, hardcover.

Earth's Earliest Biosphere: Its Origin and Evolution. J. William Schopf (ed.). Princeton University Press, Princeton, NJ, 1983. With 67 tables, 97 figures, and 47 photographs, xxv + 543 pp. Cloth, $95.00; paper, $42.50.  相似文献   

20.
Evaporite accumulations produced by artesian waters in the arid zones of southern Tunisia led to the formation of subrounded, gypsiferous mounds consisting of irregular alternations of mineral precipitates and aeolian sand. The joint occurrence of gypsum crusts and plant colonization determined the stabilization of their top surface. Careful examination of the pigmented (green-brown) crusts revealed endolithic microbial communities just below the surface. In previous optical and scanning electron microscope studies cyanobacteria were the dominant component of these communities. Molecular diversity studies based on small subunit ribosomal RNA (SSU rRNA) gene analysis revealed that Flavobacteria, Actinobacteria, Deinococcales, Alpha- and Gamma- Proteobacteria are also important components of the microbial assemblage. Their pigment analyses, determined by high performance liquid chromatography (HPLC), detected the presence of carotenoids and chlorophyll (chl) a and b. Microbial communities that produce pigmentation and display an endolithic lifestyle typify the extreme environments as those found in arid/semiarid and hot desert regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号