首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial Fe(III) and sulfate reduction are important electron transport processes in acidic pit lakes and stimulation by the addition of organic substrates is a strategy to remove acidity, iron and sulfate. This principle was applied in a pilot‐scale enclosure in pit lake 111 (Brandenburg, Germany). Because seasonal and spatial variation of temperature may affect the performance of in situ experiments considerably, the influence of temperature on Fe(III) and sulfate reduction was investigated in surface sediments from the enclosure in the range of 4–28 °C. Potential Fe(III) reduction and sulfate reduction rates increased exponentially with temperature, and the effect was quantified in terms of the apparent activation energy Ea measuring 42–46 kJ mol?1 and 52 kJ mol?1, respectively. Relatively high respiration rates at 4 °C and relatively low Q10 values (~2) indicated that microbial communities were well adapted to low temperatures. In order to evaluate the effect of temperature on growth and enrichment of iron and sulfate‐reducing bacterial populations, MPN (Most Probable Number) dilution series were performed in media selecting for the different bacterial groups. While the temperature response of specific growth rates of acidophilic iron reducers showed mesophilic characteristics, the relatively high specific growth rates of sulfate reducers at the lowest incubation temperature indicated the presence of moderate psychrophilic bacteria. In contrast, the low cell numbers and low specific growth rates of neutrophilic iron reducers obtained in dilution cultures suggest that these populations play a less significant role in Fe and S cycling in these sediments. SSCP (Single‐Strand Conformation Polymorphism) or DGGE (Denaturing Gradient Gel Electrophoresis) fingerprinting based on 16S rRNA genes of Bacteria indicated different bacterial populations in the MPN dilution series exhibiting different temperature ranges for growth.  相似文献   

2.
Abstract To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower with the greatest concentrations (up to 4 × 105 cells/g dw) occurring at the border of the landfill and in samples collected from thin lenses of clay and silt with sand streaks. Cell number estimates based on ATP concentrations were also found to be lower than the direct count measurements (<2.2 × 106 cells/g dw), and with the greatest concentrations close to the landfill. Methanogens (Archaea) and reducers of sulfate, iron, manganese, and nitrate were all observed in the aquifer. Methanogens were found to be restricted to the most polluted and reduced part of the aquifer at a maximum cell number of 5.4 × 104 cells/g dw. Populations of sulfate reducers decreased with an increase in horizontal distance from the landfill ranging from a high of 9.0 × 103 cells/g dw to a low of 6 cells/g dw. Iron, manganese, and nitrate reducers were detected throughout the leachate plume all at maximum cell numbers of 106 cells/g dw. Changes in PLFA profiles indicated that a shift in microbial community composition occurred with increasing horizontal distance from the landfill. The types and patterns of lipid biomarkers suggested that increased proportions of sulfate- and iron-reducing bacteria as well as certain microeukaryotes existed at the border of the landfill. The presence of these lipid biomarkers correlated with the MPN results. There was, however, no significant correlation between the abundances of the specific PLFA biomarkers and quantitative measurements of redox processes. The application of AODC, MPN, PLFA, and ATP analyses in the characterization of the extant microbiota within the Grindsted aquifer revealed that as distance increased from the leachate source, viable biomass decreased and community composition shifted. These results led to the conclusion that the landfill leachate induced an increase in microbial cell numbers by altering the subsurface aquifer so that it was conducive to the growth of methanogens and of iron-and sulfate-reducing bacteria and fungi. Received: 11 June 1998; Accepted: 10 December 1998  相似文献   

3.
Numbers of heterotrophic, methane oxidizing and sulfate reducing bacteria were counted in Lake Vechten. A dynamic distribution pattern was found in the stratified lake. A maximum of heterotrophs (numbers of 109 bact./l) occured in the deepest part of the lake in spring and in the metalimnion during summer-stratification. These bacteria use nearly all available oxygen in the hypolimnion. It was found that the concentration of available organic material and the oxygen tension caused the numbers of heterotrophs in the metalimnion to be high.The maximal numbers of methane oxidizers (numbers of 5.105 bact./l) were found at a depth of maximal methane concentration: the de-oxygenated hypolimnion. Preliminary evidence indicated that these organisms were facultative methane oxidizers and must be regarded as micro-aerophyllics. By oxidizing methane they removed the residual oxygen under the metalimnion.The sulfate reducing bacteria could be observed in the hypolimnion only. Decreased SO inf4 sup–2 concentration and increased numbers, of bacterai were found in the bottom water. An association between the methane oxidizers and the sulfate reducers could be deduced. It was assumed that favourable redox requirements for obligate anaerobic sulfate reducers were the results of the activities of the methane oxidizing bacteria.The dynamic distribution equilibrium of the investigated groups of bacteria was disturbed by the autumn turn-over. The heterotrophic and methane oxidizing bacteria decreased in number at that period and were equally distributed, no sulfate reducers could be detected in the free water of Lake Vechten.  相似文献   

4.
The effects of sulfate on the anaerobic degradation of lactate, propionate, and acetate by a mixed bacterial culture from an anaerobic fermenter fed with wine distillery waste water were investigated. Without sulfate and with both sulfate and molybdate, lactate was rapidly consumed, and propionate and acetate were produced; whereas with sulfate alone, only acetate accumulated. Propionate oxidation was strongly accelerated by the presence of sulfate, but sulfate had no effect on acetate consumption even when methanogenesis was inhibited by chloroform. The methane production was not affected by the presence of sulfate. Counts of lactate- and propionate-oxidizing sulfate-reducing bacteria in the mixed culture gave 4.5×108 and 1.5×106 viable cells per ml, respectively. The number of lactate-oxidizing fermentative bacteria was 2.2×107 viable cells per ml, showing that sulfate-reducing bacteria outcompete fermentative bacteria for lactate in the ecosystem studied. The number of acetoclastic methanogens was 3.5×108 viable cells per ml, but only 2.5×104 sulfate reducers were counted on acetate, showing that acetotrophic methanogens completely predominated over acetate-oxidizing sulfate-reducing bacteria. The contribution of acetate as electron donor for sulfate reduction in the ecosystem studied was found to be minor.  相似文献   

5.
Observations on the seasonal periodicity in bottom deposits of Lake Vechten indicated an ecological relationship between sulfate-reducing and methane-producing bacteria. Sulfate reducers are most abundant at depths of 0 to 2 cm in the mud at pS2- values of about 11 and redox potential values of-100 to-150 mV. Maximum number of methane producers are situated at depths of 3 to 6 cm in the mud at pS2- values of about 14, redox potential values of-250 to-300 mV and maximum values of the methane concentration. During summer stratification the numbers of bacteria increased considerably. However the number of methane producers rose much more than that of the sulfate reducers. Sulfate in the interstitial water of the sediments is reduced by the sulfate reducers and the sulfate concentration limited the latter's abundance. Methane producers are found deeper in the mud at lower concentrations of hydrogen sulphide. Therefore the different localities of the two bacterial groups may be due to sensitivity of methane producers to hydrogen sulphide. Differential counting of the mixed population of methane-producing bacteria showed that acetate-and methyl-alcohol-fermenting types are most abundant at a depth of 5, and formate-and CO2/H2-fermenting types at a depth of 3 cm in the mud.  相似文献   

6.
The effect of sulfate on the anaerobic breakdown of mixtures of acetate, propionate and butyrate at three different sulfate to fatty acid ratios was studied in upflow anaerobic sludge blanket reactors. Sludge characteristics were followed with time by means of sludge activity tests and by enumeration of the different physiological bacterial groups. At each sulfate concentration acetate was completely converted into methane and CO2, and acetotrophic sulfate-reducing bacteria were not detected. Hydrogenotrophic methanogenic bacteria and hydrogenotrophic sulfate-reducing bacteria were present in high numbers in the sludge of all reactors. However, a complete conversion of H2 by sulfate reducers was found in the reactor operated with excess sulfate. At higher sulfate concentrations, oxidation of propionate by sulfate-reducing bacteria became more important. Only under sulfate-limiting conditions did syntrophic propionate oxidizers out-compete propionate-degrading sulfate reducers. Remarkably, syntrophic butyrate oxidizers were well able to compete with sulfate reducers for the available butyrate, even with an excess of sulfate. Correspondence to: A. Visser  相似文献   

7.
The possibilities for the treatment of low‐temperature mine waste waters have not been widely studied. The amenability of low‐temperature sulfate reduction for mine waste water treatment at 9°C was studied in a bench‐scale fluidized‐bed bioreactor (FBR). Formate was used as the electron and carbon source. The first influent for the FBR was acidic, synthetic waste water containing iron, nutrients, and sulfate, followed by diluted barren bioleaching solution (DBBS). The average sulfate reduction rates were 8 mmol L?1 day?1 and 6 mmol L?1 day?1 with synthetic waste water and DBBS, respectively. The corresponding specific activities were 2.4 and 1.6 mmol SO g VSS?1 day?1, respectively. The composition of the microbial community and the active species of the FBR was analyzed by extracting the DNA and RNA, followed by PCR‐DGGE with the universal bacterial 16S rRNA gene primers and dsrB‐primers specific for sulfate‐reducing bacteria. The FBR microbial community was simple and stable and the dominant and active species belonged to the genus Desulfomicrobium. In summary, long‐term operation of a low‐temperature bioreactor resulted in enrichment of formate‐utilizing, psychrotolerant mesophilic sulfate reducing bacteria. Biotechnol. Bioeng. 2009; 104: 740–751 © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Abstract

Tharae rate of methane released from the sediment‐water interface and from the surface of the water of Lake Wingra, Madison, Wisconsin, was measured during the summer months for 2 years. The amount of methane escaping the lake is estimated to be an important factor in the carbon budget of the lake. Most rapid methanogenesis was in shallow water (less than 1 m deep) and in the uppermost 5 cm of sediment. The numbers of methanogenic bacteria were estimated by a most probable number technique to vary from approximately 102 to 3 × 104 methanogens per gram of dry weight sediment during winter and summer, respectively.  相似文献   

9.
The number and diversity of culturable microorganisms involved in sulfur oxidation and sulfate reduction were investigated in the oxidized sediments of gold mine tailings, Kuznetsk Basin, Russia. The sediments had a low pH (2.4–2.8), high SO 4 2? content (up to 22 g/l), and high concentrations of dissolved metals. The arsenic content was as high as 1.9 g/l. Bacterial phylogeny in microcosms was investigated by amplification of 16S rRNA gene fragments with subsequent denaturing gradient gel electrophoresis (DGGE). Spore-forming bacteria Desulfosporosinus were the only bacteria revealed for which the capacity for dissimilatory sulfate reduction is known. Strain Desulfosporosinus sp. DB was obtained in pure culture, and it was phylogenetically remote from other cultured and uncultured members of the genus. No sulfate-reducing members of the Deltaproteobacteria were detected. The Firmicutes members were the most numerous phylotypes in the microcosms, including a separate cluster with the similarity to Pelotomaculum not exceeding 94%. Acidithiobacillus ferrooxidans and A. caldus were found in anaerobic and microaerophilic microcosms. The number of sulfate reducers did not exceed 9.5 × 102 cells/ml.  相似文献   

10.
The flow of carbon under sulfate‐reducing conditions within a benzene‐mineralizing enrichment culture was analysed using fully labelled [13C6]‐benzene. Over 180 days of incubation, 95% of added 13C‐benzene was released as 13C‐carbon dioxide. DNA extracted from cultures that had degraded different amounts of unlabelled or 13C‐labelled benzene was centrifuged in CsCl density gradients to identify 13C‐benzene‐assimilating organisms by density‐resolved terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA gene fragments. Two phylotypes showed significantly increased relative abundance of their terminal restriction fragments in ‘heavy’ fractions of 13C‐benzene‐incubated microcosms compared with a 12C‐benzene‐incubated control: a member of the Cryptanaerobacter/Pelotomaculum group within the Peptococcaceae, and a phylotype belonging to the Epsilonproteobacteria. The Cryptanaerobacter/Pelotomaculum phylotype was the most frequent sequence type. A small amount of 13C‐methane was aceticlastically produced, as concluded from the linear relationship between methane production and benzene degradation and the detection of Methanosaetaceae as the only methanogens present. Other phylotypes detected but not 13C‐labelled belong to several genera of sulfate‐reducing bacteria, that may act as hydrogen scavengers for benzene oxidation. Our results strongly support the hypothesis that benzene is mineralized by a consortium consisting of syntrophs, hydrogenotrophic sulfate reducers and to a minor extent of aceticlastic methanogens.  相似文献   

11.
During the drilling process and transport of crude oil, water mixes with the petroleum. At oil terminals, the water settles to the bottom of storage tanks. This drainage water is contaminated with emulsified oil and water-soluble hydrocarbons and must be treated before it can be released into the environment. In this study, we tested the efficiency of a continuous flow, two-stage bioreactor for treating drainage water from an Israeli oil terminal. The bioreactor removed all of the ammonia, 93% of the sulfide and converted 90% of the total organic carbon (TOC) into carbon dioxide. SYBR Gold staining indicated that reactor 1 contained 1.7 × 108 bacteria and 3.7 × 108 phages per millilitre, and reactor 2 contained 1.3 × 108 bacteria and 1.7 × 109 phages per millilitre. The unexpectedly high mineralization of TOC and high concentration of phage in reactor 2 support the concept of a phage-driven microbial loop in the bioremediation of the drainage water. In general, application of this concept in bioremediation of contaminated water has the potential to increase the efficiency of processes.  相似文献   

12.
Aims: To better understand and manage the fate and transport of Salmonella in agricultural watersheds, we developed a culture‐based, five tube–four dilution most probable number (MPN) method for enumerating dilute densities of Salmonella in environmental waters. Methods and Results: The MPN method was a combination of a filtration technique for large sample volumes of environmental water, standard selective media for Salmonella and a TaqMan confirmation step. This method has determined the density of Salmonella in 20‐l samples of pond inflow and outflow streams as low as 0·1 MPN l?1 and a low 95% confidence level 0·015 MPN l?1. Salmonella densities ranged from not detectable to 0·55 MPN l?1 for pond inflow samples and from not detectable to 3·4 MPN l?1 for pond outflow samples. Salmonella densities of pond inflow samples were associated with densities of Escherichia coli and faecal enterococci that indicated stream contamination with faeces and with nondetectable pond outflow densities of the faecal indicator bacteria. The MPN methodology was extended to flux determinations by integrating with volumetric measurements of pond inflow (mean flux of 2·5 l s?1) and outflow (mean flux of 5·6 l s?1). Fluxes of Salmonella ranged from 100 to greater than 104 MPN h?1. Conclusions: This is a culture‐based method that can detect small numbers of Salmonella in environmental waters of watersheds containing animal husbandry and wildlife. Significance and Impact of the Study: Applying this method to environmental waters will improve our understanding of the transport and fate of Salmonella in agricultural watersheds, and can be the basis of valuable collections of environmental Salmonella.  相似文献   

13.
Aims: To evaluate throughput of seeded Legionella pneumophila bacteria in domestic point‐of‐use filters. Methods and Results: The filters were challenged with tap water seeded with Leg. pneumophila. After multiple challenge events (4·25 × 1011 CFU per filter), the levels of Legionella were lower in the effluent from the filter containing both copper and silver (mean 4·48 × 103 CFU ml?1) than in the effluent from the filter containing copper only (1·26 × 104 CFU ml?1; P < 0·001). After a single challenge event of approx. 5 × 109 CFU L. pneumophila per filter, there was no significant difference between the levels of Legionella in the effluents from a carbon filter containing copper and a carbon filter with no metals (mean 6·87 × 102 and 6·89 × 102 CFU ml?1, respectively; P = 0·985). Conclusions: Legionella was detected in filter effluent up to 6 weeks after being challenged, indicating that while filters may reduce the levels during an initial contamination event, the exposure is extended as the accumulated bacteria slough off over time. Significance and Impact of the Study: This study has provided an understanding of the response of Legionella to the use of silver and copper in domestic point‐of‐use carbon filters.  相似文献   

14.
The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ34S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.  相似文献   

15.
Total number of bacteria, cellulolytic bacteria, and H2-utilizing microbial populations (methanogenic archaea, acetogenic and sulfate-reducing bacteria) were enumerated in fresh rumen samples from sheep, cattle, buffaloes, deer, llamas, and caecal samples from horses. Methanogens and sulfate reducers were found in all samples, whereas acetogens were not detected in some samples of each animal. Archaea methanogens were the largest H2-utilizing populations in all animals, and a correlation was observed between the numbers of methanogens and those of cellulolytic microorganisms. Higher counts of acetogens were found in horses and llamas (1 × 104 and 4 × 104 cells ml−1 respectively).  相似文献   

16.
A dominant Acidithiobacillus ferrooxidans ssp. was isolated from the supergene copper deposit in Morenci, Arizona, USA. Washed bacterial suspensions (108 MPN per treatment), in pH‐neutral buffer, were inoculated onto pyrite cubes for 24 h. Heterogeneous bacterial absorption onto the pyrite removed approximately 90% of the viable bacteria from the inoculum. At T = 0, the bacteria were observed primarily in regions enriched in phosphorus. Over 30 days, the bacterial population on the pyrite cubes increased from 1.3 × 107 to 2.9 × 108 bacteria cm?2. During this growth stage, low levels of thiobacilli (228 ± 167 MPN mL?1) were also recovered from the fluid phase; however, this population decreased to zero within 30 days. Growth on pyrite occurred as micrometre‐scale planar microcolonies, a biofilm, coating the mineral surfaces. These microcolonies possessed viable thiobacilli, even after 4 months at ‘circumneutral pH’. Imaging the pyrite cubes using SEM‐EDS and scanning force microscopy demonstrated that the thiobacilli grew as iron oxy‐hydroxide‐cemented cells, leading to the formation of mineralized microcolonies. Removing the iron oxy‐hydroxides with oxalic acid did not dislodge the bacteria, demonstrating that the secondary minerals were not responsible for ‘gluing’ the bacteria to the pyrite surface. Removing organic material, i.e. the cells, by an oxygen plasma treatment revealed the presence of corrosion pits the size and shape of bacteria. Because of the inherent geochemical constraints on pyrite oxidation at neutral pH, the colonization of pyrite under circumneutral pH conditions must be facilitated by the development of an acidic nanoenvironment between the bacteria and the pyrite mineral surface.  相似文献   

17.
Sulfate reduction is an appropriate approach for the treatment of effluents with sulfate and dissolved metals. In sulfate‐reducing reactors, acetate may largely contribute to the residual organic matter, because not all sulfate reducers are able to couple the oxidation of acetate to the reduction of sulfate, limiting the treatment efficiency. In this study, we investigated the diversity of a bacterial community in the biofilm of a laboratory scale down‐flow fluidized bed reactor, which was developed under sulfidogenic conditions at an influent pH between 4 and 6. The sequence analysis of the microbial community showed that the 16S rRNA gene sequence of almost 50% of the clones had a high similarity with Anaerolineaceae. At second place, 33% of the 16S rRNA phylotypes were affiliated with the sulfate‐reducing bacteria Desulfobacca acetoxidans and Desulfatirhabdium butyrativorans, suggesting that acetotrophic sulfate reduction was occurring in the system. The remaining bacterial phylotypes were related to fermenting bacteria found at the advanced stage of reactor operation. The results indicate that the acetotrophic sulfate‐reducing bacteria were able to remain within the biofilm, which is a significant result because few natural consortia harbor complete oxidizing sulfate‐reducers, improving the acetate removal via sulfate reduction in the reactor.  相似文献   

18.
This study investigated the distribution of bacteria in groundwater from 16 different levels in five boreholes in granite bedrock down to a maximum of 860 m. Enrichment cultures were used to assay the groups of bacteria present. Autoradiographic studies with14C- or3H-labeled formate, methanol, acetate, lactate, glucose, sodium bicarbonate, leucine, glutamine, thymidine, orN-acetyl-glucosamine were used to obtain information about bacteria active in substrate uptake. The biofilm formation potential was studied in one borehole. The chemical environment in the groundwater was anaerobic with an Eh between −112 and −383 mV, a pH usually around 8, and a temperature range of 10.2 to 20.5°C, depending on the depth. The organic content ranged between <0.5 and 9.5 mg total organic carbon liter−1. Carbon dioxide, hydrogen, hydrogen sulfide, and methane were present in the water. The nitrate, nitrite, and phosphate concentrations were close to, or below, the detection limits, while there were detectable amounts of NH 4 + in the range of 4 to 330 μg liter−1. The average total number of bacteria was 2.6×105 bacteria ml−1, as determined with an acridine organge direct-count (AODC) technique. The average number of bacteria that grew on a medium with 1.5 g liter−1 of organic substrate was 7.7×103 colony-forming units (CFU) ml−1. The majority of these were facultatively anaerobic, gram-negative, nonfermenting heterotrophs. Enrichment cultures indicated the presence of anaerobic bacteria capable of growth on C-1 compounds and hydrogen, presumably methanogenic bacteria. Most probable number assays with sulfate and lactate revealed up to 5.6×104 viable sulfate-reducing bacteria per ml. A biofilm development experiment indicated an active attached microbial population. Active substrate uptake could not be registered with the bulk water populations, except for an uptake of leucine not associated with growth. The bulk water microbial cells in deep groundwater may be inactive cells detached from active biofilms on the rock surface.  相似文献   

19.
20.
Quantitative and qualitative studies of the bacterial flora of farmed freshwater prawn (Macrobrachium rosenbergii) larvae in Saudi Arabia were performed, and isolates identified where possible. Physico‐chemical characteristics, bacterial counts, and the nature of the bacterial flora of larvae rearing tank water, sediment, tank wall surfaces, larval surface, supplied water, and feed were investigated. Bacterial counts ranged from 2.1 ± 1.3 × 105 to 2.2 ± 0.8 × 107 colony forming units (CFU) ml?1 in tank water; 4.4 ± 0.9 × 107 to 8.3 ± 1.7 ×109 CFU g?1 in tank sediment; 8.6 ± 1.0 × 102 to 9.8 ±0.7 × 104 CFU cm?2 on the tank wall surface; 1.3 ± 1.1 × 104 to 7.7 ± 1.6 × 106 CFU per larva surface, 7.9 ± 1.2 × 105 to 5.0 ± 1.5 × 107 CFU g?1 in washed larval tissue slurries, 9.1 ± 0.7 × 103 CFU ml?1 in supplied water, and 2.4 ± 1.9 ×1010 CFU g?1 in mixed feed. Fourteen bacterial genera were identified, including Chryseomonas sp., Vibrio spp., Cellulomonas sp., Aeromonas hydrophila, and Pasteurella sp. The tank water and sediment had similar bacteria to those on the prawn larvae. Chryseomonas sp., Cellulomonas sp. and Vibrio sp. were the most dominant species (prevalence >10%) in tank water; Chryseomonas sp., Pseudomonas alcaligenes and Shewanella putrefaciens in the sediment; Ps. alcaligenes and Cellulomonas sp. on the tank wall surface; Chryseomonas sp., and Cellulomonas sp. on the larval surface; and Chryseomonas sp., Vibrio vulnificus, Sh. putrefaciens and V. alginolyticus in the washed larval tissue slurries (prevalence 10%). Pseudomonas alcaligenes, Moraxella sp., Serratia liquefaciens, Gordona sp. and Burkholderia glumae were absent in larvae but identified in the culture water, tank sediment, and tank wall surface. Pseudomonas sp., Chryseomonas sp., Pasteurella sp. and V. alginolyticus were the prevalent bacteria (>12%) in supplied water. The feed contained V. alginolyticus, A. hydrophila and Cellulomonas sp. as the dominant bacteria (>13%). In the culture water and larvae samples, 83% of the feed and supplied water bacteria were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号