首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we sequenced the RNA polymerase beta subunit (rpoB) gene of marine Vibrio species and assessed its discriminative power in identifying vibrios. Both the rpoB and 16S rRNA sequences of 29 phenotypically different Vibrio strains isolated from coastal waters were determined. Molecular and phylogenetic comparisons of the sequences of these two genes classified the 29 strains into 11 different species. The resolution of the Vibrio spp. on the rpoB phylogenetic tree was approximately three times greater than that on the 16S rRNA phylogenetic tree. Moreover, by comparing the rpoB sequences of 98 marine γ-Proteobacteria, including 38 marine Vibrio species, Vibrio-specific primers were developed to amplify a 730-bp fragment of the rpoB gene. Using these primers, we successfully detected Vibrio signals in environmental samples and determined their relative abundances via comparisons with known standards. This rpoB-targeting polymerase chain reaction assay can be used efficiently to monitor relative Vibrio abundance in marine waters.  相似文献   

2.
To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3′ termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54°C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50°C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3′ termini in studying the microbial diversity of environmental samples.  相似文献   

3.
Specific amplification of 16S rRNA gene fragments in combination with denaturing gradient gel electrophoresis (DGGE) was used to generate fingerprints of Chromatiaceae, green sulfur bacteria, Desulfovibrionaceae, and β-Proteobacteria. Sequencing of the gene fragments confirmed that each primer pair was highly specific for the respective phylogenetic group. Applying the new primer sets, the bacterial diversity in the chemoclines of a eutrophic freshwater lake, a saline meromictic lake, and a laminated marine sediment was investigated. Compared to a conventional bacterial primer pair, a higher number of discrete DGGE bands was generated using our specific primer pairs. With one exception, all 15 bands tested yielded reliable 16S rRNA gene sequences. The highest diversity was found within the chemocline microbial community of the eutrophic freshwater lake. Sequence comparison revealed that the six sequences of Chromatiaceae and green sulfur bacteria detected in this habitat all represent distinct and previously unknown phylotypes. The lowest diversity of phylotypes was detected in the chemocline of the meromictic saline lake, which yielded only one sequence each of the Chromatiaceae, β-2-Proteobacteria, and Desulfovibrionaceae, and no sequences of green sulfur bacteria. The newly developed primer sets are useful for the detection of previously unknown phylotypes, for the comparison of the microbial diversity between different natural habitats, and especially for the rapid monitoring of enrichments of unknown bacterial species. Received: 22 January 1999 / Accepted: 28 April 1999  相似文献   

4.
【目的】找到适宜的16S rRNA基因通用引物应用策略,应对复杂环境微生物多样性调查,尤其目前高速发展的高通量测序技术带来的巨大挑战。【方法】用Oligocheck软件分别将两对应试的古菌16S rRNA基因通用引物与RDP(Ribosomal database project)数据库中古菌16S rRNA基因序列进行匹配比对。用两对应试引物分别构建海洋沉积物样品的古菌16S rRNA基因文库。【结果】软件匹配结果显示引物f109/r958与目的基因的匹配程度高于引物f21/r958。该结果与古菌16S rRNA基因文库RFLP分析、古菌多样性指数分析结果相吻合。数据还表明,2对引物的综合文库能更好满足该沉积物样品的古菌多样性分析。【结论】选用与数据库中目的基因匹配性高的通用引物和多个引物的联合使用,可以有效提高环境样品微生物多样性调查的分辨率。  相似文献   

5.
To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3' termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54 degrees C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50 degrees C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3' termini in studying the microbial diversity of environmental samples.  相似文献   

6.
To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential.  相似文献   

7.
The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (βAOB) was evaluated. βAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the βAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations βAMOf/βAMOr, βAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on βAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.  相似文献   

8.
The microbial community associated with a marine sponge (Haliclona sp.) collected from Tateyama city, Japan was studied using 16S rRNA gene clone libraries. Two DNA templates were prepared using methods recommended for Gram-positive and Gram-negative bacteria in the Qiagen kit manual. From each DNA template, two 16S rRNA genes were PCR amplified, using the combination of universal bacterial primer 27f and primers 1385r and 1492r, respectively. A total of 347 clones were sequenced and compared with those available in DNA data banks. These sequences were members of ten bacterial phyla. Interestingly, more than 30 % of the clones represent novel sequences. A comparison of these sequences with sequences in a library prepared from DNA extracted from the surrounding water shows minimum DNA contamination. Taxonomically, the highest diversity was detected in the clone library prepared using a combination of primers 27f and 1492r and DNA isolated using the Gram-positive bacteria protocol. The potential of Haliclona sp.-associated bacteria to produce secondary metabolites was studied by cloning and sequencing the polyketide synthase (PKS, type 1) gene using the same DNA samples. Analysis of partial sequences derived from the sponge metagenome revealed 27 unique ketosynthase domains of PKS type I. This study suggests strongly that this Haliclona sp. plays host to diverse novel bacteria with a potential to produce novel polyketides.  相似文献   

9.
Miniprimer PCR, a New Lens for Viewing the Microbial World   总被引:1,自引:0,他引:1       下载免费PDF全文
Molecular methods based on the 16S rRNA gene sequence are used widely in microbial ecology to reveal the diversity of microbial populations in environmental samples. Here we show that a new PCR method using an engineered polymerase and 10-nucleotide “miniprimers” expands the scope of detectable sequences beyond those detected by standard methods using longer primers and Taq polymerase. After testing the method in silico to identify divergent ribosomal genes in previously cloned environmental sequences, we applied the method to soil and microbial mat samples, which revealed novel 16S rRNA gene sequences that would not have been detected with standard primers. Deeply divergent sequences were discovered with high frequency and included representatives that define two new division-level taxa, designated CR1 and CR2, suggesting that miniprimer PCR may reveal new dimensions of microbial diversity.  相似文献   

10.
Bacterial diversity associated with Baer Soda Lake in Inner Mongolia of China was investigated using a culture-independent method. Bacterial 16S rRNA gene libraries were generated using bacterial oligonucleotide primers, and 16S rRNA gene sequences of 58 clones were analyzed phylogenetically. The library was dominated by 16S rDNAs of Gram-negative bacteria (24% -Proteobacteria, 31% -Proteobacteria, 33% -Proteobacteria, and 2% -Proteobacteria), with a lower percentage of clones corresponding to Gram-positive bacteria. Forty cloned sequences were similar to that of known bacterial isolates (>97% sequence similarity), represented by the species of the genera Brevundimonas, Comamonas, Alcaligenes, Stenotrophomonas, and Klebsiella. Eighteen cloned sequences showed less affiliation with known taxa (<97% sequence similarity) and may represent novel taxa.Communicated by K. Horikoshi  相似文献   

11.
The modern agricultural practice utilizing plant growth promoting rhizobacteria (PGPR) has brought great benefits in the promotion of crop growth. Among PGPR, Azospirillum is considered as an important genus which is not only closely-associated with plants but also shows potential in the degradation of organic contaminants. However, lack of media for selective isolation or techniques for specific detection or identification limit the exploration of these rhizobacteria. This motivated us to design a genus-specific oligonucleotide primer pair which could assist in rapid detection of species of the genus Azospirillum by means of PCR-specific amplification. The sensitivity and specificity of the newly designed primer pair Azo494-F/Azo756-R were tested against 12 Azospirillum type strains and other closely-related genera. The Azospirillum-specific 16S rRNA gene fragment (263 bp) was successfully amplified for all the reference Azospirillum species with the designed primer pair. No amplification was noted for closely-related species from other genera. The genus specificity was validated with 18 strains including environmental isolates. Interestingly, two strains assigned earlier as Azospirillum amazonense (DSM 2787T) and Azospirillum irakense (DSM 11586T) failed to produce an Azospirillum-specific fragment with this primer pair. Further phylogenetic analysis of these two isolates based on 16S rRNA gene sequences shows that these two strains might belong to other genera rather than Azospirillum. Preliminary screening of isolates and soil samples with the Azospirillum-specific primers was successful in terms of the rapid detection of Azospirillum isolates. By using real-time PCR analysis the minimum limit of Azospirillum detection was 102 CFU g−1 in the seeded soil sample. The newly designed primers can be used to study the diversity of Azospirillum in ecosystems and aid in the exploration of novel species.  相似文献   

12.
The availability of a diverse set of 23S rRNA gene sequences enabled evaluation of the specificity of 39 previously published and 4 newly designed primers specific for bacteria. An extensive clone library constructed using an optimized primer pair resulted in similar gene richness but slightly differing coverage of some phylogenetic groups, compared to a 16S rRNA gene library from the same environmental sample.  相似文献   

13.
The taxonomic composition of a microbial community can be deduced by analyzing its rRNA gene content by, e.g., high-throughput DNA sequencing or DNA chips. Such methods typically are based on PCR amplification of rRNA gene sequences using broad-taxonomic-range PCR primers. In these analyses, the use of optimal primers is crucial for achieving an unbiased representation of community composition. Here, we present the computer program DegePrime that, for each position of a multiple sequence alignment, finds a degenerate oligomer of as high coverage as possible and outputs its coverage among taxonomic divisions. We show that our novel heuristic, which we call weighted randomized combination, performs better than previously described algorithms for solving the maximum coverage degenerate primer design problem. We previously used DegePrime to design a broad-taxonomic-range primer pair that targets the bacterial V3-V4 region (341F-805R) (D. P. Herlemann, M. Labrenz, K. Jurgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson, ISME J. 5:1571–1579, 2011, http://dx.doi.org/10.1038/ismej.2011.41), and here we use the program to significantly increase the coverage of a primer pair (515F-806R) widely used for Illumina-based surveys of bacterial and archaeal diversity. By comparison with shotgun metagenomics, we show that the primers give an accurate representation of microbial diversity in natural samples.  相似文献   

14.
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.  相似文献   

15.
The availability of a diverse set of 23S rRNA gene sequences enabled evaluation of the specificity of 39 previously published and 4 newly designed primers specific for bacteria. An extensive clone library constructed using an optimized primer pair resulted in similar gene richness but slightly differing coverage of some phylogenetic groups, compared to a 16S rRNA gene library from the same environmental sample.  相似文献   

16.
Metabarcoding of microbial eukaryotes (collectively known as protists) has developed tremendously in the last decade, almost solely relying on the 18S rRNA gene. As microbial eukaryotes are extremely diverse, many primers and primer pairs have been developed. To cover a relevant and representative fraction of the protist community in a given study system, an informed primer choice is necessary, as no primer pair can target all protists equally well. As such, a smart primer choice is very difficult even for experts and there are very few online resources available to list existing primers. We built a database listing 285 primers and 83 unique primer pairs that have been used for eukaryotic 18S rRNA gene metabarcoding. In silico performance of primer pairs was tested against two sequence databases: PR2 version 4.12.0 for eukaryotes and a subset of silva version 132 for bacteria and archaea. We developed an R -based web application enabling browsing of the database, visualization of the taxonomic distribution of the amplified sequences with the number of mismatches, and testing any user-defined primer or primer set ( https://app.pr2-primers.org ). Taxonomic specificity of primer pairs, amplicon size and location of mismatches can also be determined. We identified universal primer sets that matched the largest number of sequences and analysed the specificity of some primer sets designed to target certain groups. This tool enables guided primer choices that will help a wide range of researchers to include protists as part of their investigations.  相似文献   

17.

Background

The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria.

Methodology/Principal Findings

Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster.

Conclusions/Significance

The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed.  相似文献   

18.
Choi DH  Noh JH  Yu OH  Kang YS 《Biofouling》2010,26(8):953-959
To elucidate the bacterial diversity in biofilms formed on a condenser tube from a nuclear power plant, 16S rRNA gene sequences were examined using a PCR-cloning-sequencing approach. Twelve operational taxonomic units were retrieved in the clone library, and the estimated species richness was low (13.2). Most of the clones (94.7%) were affiliated with α-Proteobacteria; Planctomycetes and γ-Proteobacteria were much rarer. Interestingly, except for one clone belonging to Pseudoalteromonas, most of the sequences displayed sequence similarities <97% of those of the closest type strains. Based on 16S rRNA phylogenetic analysis, most bacteria were assigned to novel taxa above the species level. The low species richness and unusual bacterial composition may be attributable to selective pressure from chlorine in the cooling water. To prevent or control bacterial biofilms in cooling circuits, additional studies of the physiology and ecology of these species will be essential.  相似文献   

19.
Here, we propose an advanced method for recently developed fingerprinting strategies to analyse microbial populations by direct detection of 16S rRNA sequences occurring in natural habitats. The differential display (DD) technique, which is widely used to analyse for eukaryotic gene expression, was optimized to assess bacterial rRNA diversity in environmental samples. Double-stranded cDNAs of rRNAs were synthesized without a forward primer digested with endonuclease and ligated with a double-stranded adapter. The fragments obtained were then amplified using an adapter-specific extended primer and a 16S rDNA universal reverse primer pair displayed by electrophoresis on a polyacrylamide gel. We validated this approach by characterization of a microbial community colonizing a geothermal (48°C) vent system located close to the eruption zone of the south-east crater of the Mount Etna volcano, Sicily. Analysis of the patterns of abundant 16S rRNA revealed a considerable diversity of metabolically active bacteria phylogenetically clustering within the Crenarchaeota , Cyanobacteria , Firmicutes , Planctomycetales and Thermus divisions. Two sequence phylotypes were affiliated with uncultivated representatives of the recently described candidate division OP10 from a Yellowstone hot spring.  相似文献   

20.
The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号