首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

2.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

3.
The diversity and activity of dissimilatory Fe(III)-reducing bacteria was investigated in acidic, ochre-precipitating springs on Mam Tor, East Midlands, UK. The springs at this acid rock drainage site are located below a 3000 year old landslip, where biooxidation of exposed pyrite-containing minerals has resulted in the production of metal-laden acidic waters. A diverse microbial community was found downstream in the sediments dominated by Fe(III) minerals, and included close relatives to known acidophilic (Acidimicrobium and Acidiphilium) and neutraphilic (Geobacter and Pelobacter) Fe(III)-reducing bacteria. Analysis by XRD and TEM confirmed the presence of both amorphous and well-defined Fe(III) mineral phases in the sediments including lepidocrocite, goethite and schwertmannite. Microcosm-based experiments demonstrated that the bioavailable Fe(III) was reduced under anaerobic conditions, concomitant with sulphate release. XRD analysis suggested that schwertmannite (an iron sulphate hydroxide) was utilized preferentially by the Fe(III)-reducing bacteria, leading to the release of sulphate. Although the microcosms contained sufficient concentrations of naturally occurring electron donor to sustain significant levels of Fe(III) reduction, this process was stimulated by the addition of glycerol and complex electron donors. Thus, the acidic Fe(III)-containing sediments contain a diversity of DIRBs that can be stimulated by the addition of electron donor as a first step in the reversal of acid rock and acid mine drainage contamination.  相似文献   

4.
The development of plasma membrane-associated iron(III) reductase activity was characterized in root systems of Pisum sativum during the first 2 wk of growth, as plants were challenged with iron-deficiency stress. Plants of a parental genotype (cv. Sparkle) and a functional iron-deficiency mutant genotype (E107) were grown hydroponically with or without supplemental iron. Iron(III) reductase activity was visualized by placing the roots in an agarose matrix containing 0.2 idm Fe(III)-ethylenediaminetetraacetic acid and 0.3 mM Na2-bathophenanthrolinedisulfonic acid (BPDS). Red staining patterns, resulting from the formation of Fe(II)-BPDS, were used to identify iron(III)-reducing regions. Iron(III) reduction was extensive on roots of E107 as early as d 7, but not until d 11 for -Fe-treated Sparkle. Roots of +Fe-treated Sparkle showed limited regions of reductase activity throughout the period of study. For secondary lateral roots, iron(III) reduction was found for all growth types except + Fe-treated Sparkle. Treating Sparkle plants alternately to a cycle of iron deficiency, iron sufficiency, and iron deficiency revealed that reductase activity at a given root zone could be alternatively present, absent, and again present. Our results suggest that for Pisum roots grown under the present conditions, iron-deficiency stress induces the activation of iron(III) reductase capacity within 2 d.  相似文献   

5.
Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml−1 for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment cultures from contaminated sites were also shown to rapidly reduce millimolar amounts of U(VI) in comparison to killed controls. With DNA extracted directly from subsurface sediments, quantitative analysis of 16S rRNA gene sequences with MPN-PCR indicated that Geobacteraceae sequences were more abundant in pristine compared to contaminated environments,whereas Anaeromyxobacter sequences were more abundant in contaminated sediments. Thus, results from a combination of cultivation-based and cultivation-independent approaches indicate that the abundance/community composition of Fe(III)-reducing consortia in subsurface sediments is dependent upon geochemical parameters (pH, nitrate concentration) and that microorganisms capable of producing spores (gram positive) or spore-like bodies (Anaeromyxobacter) were representative of acidic subsurface environments.  相似文献   

6.
The potential for microscale bacterial Fe redox cycling was investigated in microcosms containing ferrihydrite-coated sand and a coculture of a lithotrophic Fe(II)-oxidizing bacterium (strain TW2) and a dissimilatory Fe(III)-reducing bacterium (Shewanella alga strain BrY). The Fe(II)-oxidizing organism was isolated from freshwater wetland surface sediments which are characterized by steep gradients of dissolved O2 and high concentrations of dissolved and solid-phase Fe(II) within mm of the sediment–water interface, and which support comparable numbers (105–106 mL−1) of culturable Fe(II)-oxidizing and Fe(III)-reducing reducing. The coculture systems showed minimal Fe(III) oxide accumulation at the sand-water interface, despite intensive O2 input from the atmosphere and measurable dissolved O2 to a depth of 2 mm below the sand–water interface. In contrast, a distinct layer of oxide precipitates formed in systems containing Fe(III)-reducing bacteria alone. Examination of materials from the cocultures by fluorescence in situ hybridization indicated close physical juxtapositioning of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the upper few mm of sand. Our results indicate that Fe(II)-oxidizing bacteria have the potential to enhance the coupling of Fe(II) oxidation and Fe(III) reduction at redox interfaces, thereby promoting rapid microscale cycling of Fe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
4-chloronitrobenzene (4-Cl-NB) was rapidly reduced to 4-chloroaniline with half-lives of minutes in a dissimilatory Fe(III)-reducing enrichment culture. The initial pseudo-first-order rate constants at 25°C ranged from 0.11 to 0.19 per minute. The linear Arrhenius correlation in a temperature range of 6 to 85°C and the unchanged reactivity after pasteurization indicated that the nitroreduction occurred abiotically. A fine-grained black solid which was identified as poorly crystalline magnetite (Fe3O4) by X-ray diffraction accumulated in the enrichments. Magnetite produced by the Fe(III)-reducing bacterium Geobacter metallireducens GS-15 and synthetic magnetite also reduced 4-Cl-NB. These results suggest that the reduction of 4-Cl-NB by the enrichment material was a surface-mediated reaction by dissimilatory formed Fe(II) associated with magnetite.  相似文献   

8.
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecological role of dissimilatory Fe(III)-reducing bacteria in this habitat. The concentration of mild-acid-extractable Fe(II) increased with sediment depth up to 50 g kg−1, suggesting that iron reduction has occurred recently. The maximum concentrations of dissolved Fe(II) in interstitial water (41 mg liter−1) occurred 10 to 15 cm beneath the sediment-water interface, suggesting that sulfidogenesis may not be the predominant terminal electron-accepting process in this environment and that dissolved Fe(II) arises from biological reductive dissolution of iron (hydr)oxides. The concentration of sedimentary magnetite (Fe3O4), a common product of bacterial Fe(III) hydroxide reduction, was as much as 15.5 g kg−1. Most-probable-number enrichment cultures revealed that the mean density of Fe(III)-reducing bacteria was 8.3 × 105 cells g (dry weight) of sediment−1. Two new strains of dissimilatory Fe(III)-reducing bacteria were isolated from surface sediments. Collectively, the results of this study support the hypothesis that dissimilatory reduction of iron has been and continues to be an important biogeochemical process in the environment examined.  相似文献   

9.
The genus Paenibacillus was hardly described as a Fe(III)-reducing agent, only limited to reduce soluble forms or Fe inserted in poorly crystallized structures. In this study, three Paenibacillus strains capable of reducing manganese oxides in addition to iron oxides were isolated from Cameroonian and Brazilian soils. These strains reduced iron minerals from poorly crystallized 2-line ferrihydrite to well-crystallized Al-substituted and pure goethite with a significant production of soluble ferrous iron. These Paenibacillus strains, inhabitants from ferralitic temporarily waterlogged soils, could play an important role in the bioweathering of minerals and metal mobility in soils.  相似文献   

10.
The high-sulfur coal desulfurization process completed by A. ferrooxidans LY01 cells domesticated with either ferrous iron [Fe(II)] or pyrite (FeS2) was investigated in this article. The desulfurization rate for 13 d was as high as 67.8% for the LY01 cells domesticated with pyrite but was only 45.6% for the LY01 cells domesticated with Fe(II). Bacterial adsorption experiments indicated that the bacterial adsorption quantity onto the pyrite particles was similar to the desulfurization efficiency. FTIR analysis showed that chemical composition of the two cell types was similar, but the LY01 cells domesticated with pyrite had higher levels of hydrophobic aromatic R-O groups than cells domesticated with Fe(II). The amount of extracellular polymeric substances (EPS) from the pyrite-domesticated LY01 cells was 1820 μg C/1010 cells, which was five times more than the amount of EPS in the Fe(II)-domesticated cells; the EPS readily bound Fe(III) with a maximum binding capacity of 0.21 mg Fe(III) per mg C EPS. Strains of pyrite-domesticated LY01 with a high amount of Fe(III) in their EPS possess greater oxidation activity than Fe(II)-domesticated strains with fewer Fe(III). These experiments showed the importance of the substrate-specific differences in the oxidative activity of A. ferrooxidans LY01. In addition, this study provides theoretical guidance for the future optimization of the biodesulfurization process.  相似文献   

11.
A dissimilatory Fe(III)-reducing bacterium was isolated from mining-impacted lake sediments and designated strain CdA-1. The strain was isolated from a 4-month enrichment culture with acetate and Fe(III)-oxyhydroxide. Strain CdA-1 is a motile, obligately anaerobic rod, capable of coupling the oxidation of acetate and other organic acids to the reduction of ferric iron. Fe(III) reduction was not observed using methanol, ethanol, isopropanol, propionate, succinate, fumarate, H2, citrate, glucose, or phenol as potential electron donors. With acetate as an electron donor, strain CdA-1 also grew by reducing nitrate or fumarate. Growth was not observed with acetate as electron donor and O2, sulfoxyanions, nitrite, trimethylamine N-oxide, Mn(IV), As(V), or Se(VI) as potential terminal electron acceptors. Comparative 16 S rRNA gene sequence analyses show strain CdA-1 to be most closely related (93.6% sequence similarity) to Rhodocyclus tenuis. However, R. tenuis did not grow heterotrophically by Fe(III) reduction, nor did strain CdA-1 grow photrophically. We propose that strain CdA-1 represents a new genus and species, Ferribacterium limneticum. Strain CdA-1 represents the first dissimilatory Fe(III) reducer in the β subclass of Proteobacteria, as well as the first Fe(III) reducer isolated from mine wastes. Received: 14 July 1998 / Accepted: 14 December 1998  相似文献   

12.
A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO2. Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O2 as alternative electron acceptors. Optimum growth was observed at 30°C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes.  相似文献   

13.
The green alga Chlamydomonas reinhardtii Dangeard CW-15 exhibited very low rates of plasma-membrane Fe(III) reductase activity when grown under Fe-sufficient conditions. After switching the medium to an Fe-free formulation, both ferricyanide reductase and ferric chelate reductase activities rapidly increased, reaching a maximum after 3 d under iron-free conditions. Both of the Fe(III) reductase activities increased in parallel over time, they exhibited similar K m values (approximately 10 μM) with respect to Fe(III), displayed the same pH profile of activity, and both exhibited the same degree of light stimulation which could be inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). Furthermore, ferricyanide competitively inhibited ferric chelate reduction by iron-limited cells. These results indicate that both Fe(III) reductase activities were mediated by the same iron-limitation-induced plasma-membrane reductase. No evidence was found for the presence of Fe(III)-reducing substances in the culture medium, or for the involvement of active oxygen species in the process of Fe(III) reduction. Chlamydomonas reinhardtii appears to respond to iron limitation in a manner similar to Strategy I higher plants. Received: 24 June 1997 / Accepted: 2 August 1997  相似文献   

14.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

15.
刘洪艳  刘淼  袁媛 《微生物学通报》2020,47(9):2711-2719
【背景】一些铁还原细菌具有异化铁还原与产氢的能力,该类细菌在环境污染修复的同时能够解决能源问题。【目的】从海洋沉积物中富集获得异化铁还原菌群,明确混合菌群组成、异化铁还原及产氢性质。获得海洋沉积物中异化铁还原混合菌群组成,分析菌群异化铁还原和产氢性质。【方法】利用高通量测序技术分析异化铁还原菌群的优势菌组成,在此基础上,分析异化铁还原混合菌群在不同电子供体培养条件下异化铁还原能力和产氢性质。【结果】高通量数据表明,在不溶性氢氧化铁为电子受体和葡萄糖为电子供体厌氧培养条件下,混合菌群的优势菌属主要是梭菌(Clostridium),属于发酵型异化铁还原细菌。混合菌群能够利用电子供体蔗糖、葡萄糖以及丙酮酸钠进行异化铁还原及发酵产氢。葡萄糖为电子供体时,菌群累积产生Fe(Ⅱ)浓度和产氢量最高,分别是59.34±6.73 mg/L和629.70±11.42 mL/L。【结论】异化铁还原混合菌群同时具有异化铁还原和产氢能力,拓宽了发酵型异化铁还原细菌的种质资源,探索异化铁还原细菌在生物能源方面的应用。  相似文献   

16.
Few studies have examined the molecular to micron-scale interactions between dissimilatory Fe(III)-reducing bacteria and poorly crystalline Fe(III) phases which are frequently the most bioavailable Fe(III) sources in the subsurface. Here we describe methods for analysing these interactions using a range of chemical and spectroscopic techniques. Glass slides were coated with a synthetic poorly crystalline Fe(III) phase and then incubated in the presence of the Fe(III)-reducing bacterium Geobacter sulfurreducens and a suitable growth medium. Growth on the Fe(III)-coating was observed via cell staining and environmental scanning electron microscopy while microbial Fe(III) reduction was quantified using a colorimetric assay. However, following microbial reduction, Fe(II) could not be detected on the slide surface using X-ray photoelectron spectroscopy. Fe(II)-coated control slides showed that the mineral surface was not re-oxidised during handling or analysis. Further experiments intended to demonstrate removal of Tc(VII) and Cr(VI) from solution via abiotic reduction mediated by biogenic Fe(II) on the slide surface resulted in far lower levels of Tc(VII) and Cr(VI) reduction than expected. These data may indicate that the electrons transferred from G. sulfurreducens to poorly crystalline Fe(III) involves the deeper mineral structure, so that Fe(II) phases are not detectable on the surface. The environmental implications of this hypothesis are discussed.  相似文献   

17.
The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions.  相似文献   

18.
The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH4 +) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40–50% of [14C]-RDX was mineralized to 14CO2 in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments.  相似文献   

19.
Recent studies of bacterial Fe(II) oxidation at circumneutral pH by a newly-isolated lithotrophic β-Proteobacterium (strain TW2) are reviewed in relation to a conceptual model that accounts for the influence of biogenic Fe(III)-binding ligands on patterns of Fe(II) oxidation and Fe(III) oxide deposition in opposing gradients of Fe(II) and O2. The conceptual model envisions complexation of Fe(III) by biogenic ligands as mechanism which alters the locus of Fe(III) oxide deposition relative to Fe(II) oxidation so as to delay/retard cell encrustation with Fe(III) oxides. Experiments examining the potential for bacterial Fe redox cycling in microcosms containing ferrihydrite-coated sand and a coculture of a lithotrophic Fe(II)-oxidizing bacterium (strain TW2) and a dissimilatory Fe(III)-reducing bacterium (Shewanella algae strain BrY) are described and interpreted in relation to an extended version of the conceptual model in which Fe(III)-binding ligands promote rapid microscale Fe redox cycling. The coculture systems showed minimal Fe(III) oxide accumulation at the sand-water interface, despite intensive O2 input from the atmosphere and measurable dissolved O2 to a depth of 2 mm below the sand-water interface. In contrast, a distinct layer of oxide precipitates formed in systems containing Fe(III)-reducing bacteria alone. Voltammetric microelectrode measurements revealed much lower concentrations of dissolved Fe(II) in the coculture systems. Examination of materials from the cocultures by fluorescence in situ hybridization indicated close physical juxtapositioning of Fe(II)-oxidizing and Fe(III)reducing bacteria in the upper few mm of sand. Together these results indicate that Fe(II)-oxidizing bacteria have the potential to enhance the coupling of Fe(II) oxidation and Fe(III) reduction at redox interfaces, thereby promoting rapid microscale cycling of Fe.  相似文献   

20.
An investigation was conducted to assess the microbial diversity and biogeochemistry of a pristine shallow glaciofluvial groundwater system on the Canadian Shield. Vadose zone sands were very fine-grained, consisting mostly of iron oxide-coated quartz. Below the water table in the saturated zone, iron oxide-coating on quartz grains were absent, owing presumably to reductive dissolution by Fe(III)-reducing bacteria and chemical weathering, respectively. Groundwater pH was circumneutral at 6.4 + 0.1, and Eh was slightly reducing at 349 ± 15 mV compared to local surface waters at 417 ± 21 mV; the total dissolved solids concentration in groundwater was 45.2 ± 6.9 mg/L. A total of 269 clones were sequenced and compiled into a 16S rRNA gene library, and representative operational taxonomic units (OTU) were retrieved from basic local alignment search tool (BLAST) analyses at the species-level across 7 phyla, including Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Firmicutes, Planctomycetes, and Proteobacteria. Aerobic, anaerobic, and facultative anaerobic heterotrophs were predominant among the OTU. Lithoautotrophic ammonium- and nitrite-oxidizers were especially prominent, as were diazotrophs, nitrate- and nitrite-reducers. Representative OTU also included Fe(II)-oxidizers and Fe(III)-reducers, whereas those associated with sulfur cycling were rare. These observations suggest that there is considerable potential for biogeochemical cycling of nitrogen and iron within shallow glaciofluvial groundwater systems on the Canadian Shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号