首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped from sample particles, and (4) cellular ultrastructure. Appreciable numbers of microbial cells were present in the subsurface (total counts: 106–107 cellsg–1; viable counts up to 106 cells · g–1), but the subsurface microflora was considerably less populous than that of the surface soil (total counts: 109 cells·g–1; viable counts: 107–108 cells · g–1). The subsurface microflora (especially that of the saturated zone) also appeared to be much less diverse, containing fewer microbial types that would grow on enumeration plates (on nutrient-rich media, 3–4 colony types versus 19–22 for the surface soil) and fewer cell types that could be distinguished by direct microscopy (3–4 types versus 17 for the surface soil). The specific types of microorganisms that were numerically predominant in the aquifer sediments were entirely different from those that were predominant in the surface soil. Moreover, the predominant types varied from one depth to another within the saturated zone. The potential metabolic capability of the subsurface microflora, as indicated by its readiness to grow rapidly on nutrient-rich media, also varied with depth.  相似文献   

2.
The bacterial microflora of two shallow aquifers (saturated subsurface zones) in Oklahoma was characterized by direct observation with light and electron microscopy, by plating, and by examination of colony morphology and distribution. Isolated bacterial strains were also examined. Total cell counts varied only slightly (2.9 × 106 to 9.8 × 106 g [dry wt]−1) from sample to sample, whereas colony counts varied widely (6.3 × 102 to 6.5 × 106 CFU g [dry wt]−1). Colony counts on nutritionally rich media were lower than on low-nutrient media, especially in samples from the saturated zone. The variety of colony types growing on nutritionally rich media decreased with increasing depth and saturation. Colony counts of anaerobic bacteria also decreased with depth but were at least 100-fold lower than aerobic counts on most media. Cell morphologies of bacteria grown aerobically on plates included short rods, cocci, and actinomycete-like forms. Direct light microscopic observation of sediments revealed short, rod-shaped, and coccoid bacterial cells; endospores, actinomycete spores, and eucaryotic forms were not observed by light microscopy. Electron microscopic observation of bacteria released from the samples revealed that 85 to 90% of them were coccoid, gram-positive, Arthrobacter-like organisms, some of which were dividing or contained completed division septa; other types of gram-positive and gram-negative bacteria were present in lower numbers. Isolated bacterial strains were able to grow on both nutritionally rich and low-nutrient media. A higher proportion of gram-negative organisms was isolated than gram-positive organisms. Most of the isolates were capable of storing polyphosphate, poly-β-hydroxybutyrate, or polysaccharide. The results of this study suggest that the microbial population of these two shallow aquifers is dominated by aerobic, nutritionally versatile bacteria that can subsist on low concentrations of organic compounds without forming specialized resting cells. Other types of microorganisms, such as facultatively anaerobic bacteria and microeucaryotes, may also be present, but they represent only a small fraction of the microflora.  相似文献   

3.
Samples of groundwater and the enclosing sediments were compared for densities of bacteria using direct (acridine orange direct staining) and viable (growth on 1% PTYG medium) count methodology. Sediments to a depth of 550 m were collected from boreholes at three sites on the Savannah River Site near Aiken, South Carolina, using techniques to insure a minimum of surface contamination. Clusters of wells screened at discreet intervals were established at each site. Bacterial densities in sediment were higher, by both direct and viable count, than in groundwater samples. Differences between direct and viable counts were much greater for groundwater samples than for sediment samples. Densities of bacteria in sediment ranged from less than 1.00×106 bacteria/g dry weight (gdw) up to 5.01 ×108 bacteria/gdw for direct counts, while viable counts were less than 1.00×103 CFU/gdw to 4.07×107 CFU/gdw. Bacteria densities in groundwater were 1.00×103–6.31×104 bacteria/ml and 5.75–4.57×102 CFU/ml for direct and viable counts, respectively. Isolates from sediment were also found to assimilate a wider variety of carbon compounds than groundwater bacteria. The data suggest that oligotrophic aquifer sediments have unique and dense bacterial communities that are attached and not reflected in groundwater found in the strata. Effective in situ bioremediation of contaimination in these aquifers may require sampling and characterization of sediment communities.  相似文献   

4.
The microbial diversity in two deep, confined aquifers, the Grande Ronde (1270 m) and the Priest Rapids (316 m), Hanford Reservation, Washington, USA, was investigated by sampling from artesian wells. These basaltic aquifers were alkaline (pH 8.5 to 10.5) and anaerobic (Eh –200 to –450 mV). The wells were allowed to free-flow until pH and Eh stabilized, then the microflora was sampled with water filtration and flow-through sandtrap methods. Direct microscopic counts showed 7.6 × 105 and 3.6 × 103 bacteria ml–1 in water from the Grande Ronde and Priest Rapids aquifers, respectively. The sand filter method yielded 5.7 × 108 and 1.1 × 105 cells g–1 wet weight of sand. The numbers of bacteria did not decrease as increasing volumes of water were flushed out. The heterotrophic diversity of these bacterial populations was assessed using enrichments for 20 functional groups. These groups were defined by their ability to grow in a matrix of five different electron acceptors (O2, Fe(III), NO3 , SO4 2–, HCO3 ) and four groups of electron donors (fermentation products, monomers, polymers, aromatics) in a mineral salts medium at pH 9.5. Growth was assessed by protein production. Culture media were subsequently analyzed to determine substrate utilization patterns. Substrate utilization patterns proved to be more reliable indicators of the presence of a particular physiological group than was protein production. The sand-trap method obtained a greater diversity of bacteria than did water filtration, presumably by enriching the proportion of normally sessile bacteria relative to planktonic bacteria. Substrate utilization patterns were different for microflora from the two aquifers and corresponded to their different geochemistries. Activities in the filtered water enrichments more closely matched those predicted by aquifer geochemistry than did the sand-trap enrichments. The greatest activities were found in Fe(III)-reducing enrichments from both wells, SO4-reducing enrichments from the Grande Ronde aquifer, and methanogenic enrichments from the Priest Rapids aquifer. Organisms from these aquifers may be useful for high-pH bioremediation applications as well as production of biotechnological products. These organisms may also be useful for modeling potential reactions near buried concrete, as might be found in subsurface waste depositories. Offprint requests to: T. O. Stevens.  相似文献   

5.
The distribution of microorganisms in deep subsurface profiles was determined at three sites at the Savannah River Plant, Aiken, South Carolina. Acridine orange direct counts (AODC) of bacteria were highest in surface soil samples and declined to the 106 to 107 per gram range in the subsurface, but then did not decline further with depth. In the subsurface, AODC values varied from layer to layer, the highest being found in samples from sandy aquifer formations and the lowest in clayey interbed layers. Sandy aquifer sediments also contained the highest numbers of viable bacteria as determined by aerobic spread plate counts (CFU) on a dilute heterotrophic medium. In some of these samples bacterial CFU values approached 100% of the AODC values. Viable protozoa (amoebae and flagellates, but no ciliates) were found in samples with high bacterial CFU values. A variety of green algae, phytoflagellates, diatoms, and a few cyanobacteria were found at low population densities in samples from two of the three boreholes. Low numbers of fungi were evenly distributed throughout the profiles at all three sites. Microbial population density estimates correlated positively with sand content and pore‐water pH, and negatively with clay content and pore‐water metal concentration. A large diversity of prokaryotic and eukaryotic microorganisms was found in samples with high population densities. A survey of bacterial strains isolated from subsurface samples revealed associations of gram‐positive bacteria with high clay sediments and gram‐negative bacteria with sandy sediments. The ability to deposit lipophilic storage material (presumably poly‐ß‐hydroxybutyrate) was found in a high proportion of isolates from sandy sediments, but only rarely in isolates from high clay sediments.  相似文献   

6.
Azra Tufail 《Hydrobiologia》1987,148(3):245-255
Sediment cores were set up to study microbial colonisation and interactions on marine sand grains under enrichment conditions. Cores were enriched with photosynthetic media in the light and dark (PL, PD) and heterotrophic media in the light and dark (HL, HD), and were incubated for 25 days. Sediment chlorophylls were then measured by acetone extraction, viable heterotrophic bacteria by plate counts, and numbers of cells mm–2 sand grain surface by s.e.m. Chlorophyll a occurred in all sediments but was highest in the PL sediment. Bacteriochlorophyll a was only observed in the HL sediment. Heterotrophic viable counts were high in the HL and HD sediments. Dense growth of diatoms and blue-green algae, and a marine fungal Thraustochytrid sp. occurred on PL grains. The blue-green alga Schizothrix was often associated with the diatom Amphora on PL grains. Many different bacteria grew on HL and HD grains and some unusual colony and cell morphologies were recorded (Caulobacter, Flexibacter, polymer strands). Characteristic flakey material sometimes occurred in hollows on grains. The results are discussed in relation to microbial communities in low energy sedimentary environments.  相似文献   

7.
Factors affecting viable cell counts in groundwater or sediments were studied with samples from the Segeberg Forest test area in northern Germany. There was very little variation in results with the season (April, August, November) or depth of sampling; generally there were 103–104 aerobic cells per ml or g sediment. Long incubation times resulted in higher cell counts; groundwater samples required 4–5 weeks, and sediment extracts had to be cultured for 7 weeks. Total cell counts in sediment were 102–104 cell/g higher than viable cell counts of aerobes. This was explained partly by the additional presence of anaerobes and partly by the observation that some morphotypes may not have grown under our conditions. Viable cell counts were not influenced by cell extraction from the sediment with either Na-pyrophosphate or groundwater extracts. However, iron-precipitating or manganese-oxidizing bacteria were better extracted with sterile groundwater. The microflora of wells was more numerous than that of the free aquifer; consequently it was better to pump off all well water before aquifer water was sampled. The diameter of the well was also important; thinner tubes had higher cell counts than those with wider diameter. For sampling, wells should be at least 1 year old, since young wells contain higher numbers of microorganisms due to underground disturbances from the drilling. Turbid water samples could be clarified by filtration, but this reduced the viable counts by 1–2 orders of magnitude. Two different media inoculated with a sample dilution resulted in the same cell counts, but their microbial diversity was different. Storage of groundwater samples before processing resulted in up to 17-fold increases in cell counts and loss of diversity in the first 24 hours. Cell numbers decreased slowly during longer storage.  相似文献   

8.
Rates of Microbial Metabolism in Deep Coastal Plain Aquifers   总被引:15,自引:9,他引:6       下载免费PDF全文
Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.  相似文献   

9.
To characterize the deep subsurface environment of Rainier Mesa, Nevada Test Site, rock samples were taken from tunnels U 12b, U12g, U12p, and U 12n, which varied in depth from 50 m to 450 m and in gravimetric moisture content from 4% to 27%. Values for total count, viable count, biomass, Simpson diversity, equitability, similarity coefficient, and number of distinct colony types indicated microbiological variability between samples. Viable counts ranged from less than 1 × 101 to 2.4 × 105 CFU g dry wt–1 of rock. Direct counts and enumeration based on phospholipid determination indicated larger numbers of cells g dry wt-1 of rock than viable counts. Simpson diversity indices, equitability, and numbers of distinct colony types varied from 3.00 to 8.05, 0.21 to 0.89, and 7 to 19, respectively, and indicated heterogeneity between samples. Each distinct morphotype was purified and characterized. Gram reaction, morphology, metal and antibiotic resistances, and metabolic activities of each isolate confirmed spatial variability among microbiota isolated from different locations. Most probable numbers of nitrifying, sulfur oxidizing, and sulfur-reducing bacteria were below the limit of detection in all samples, while the numbers of nitrogen fixing bacteria ranged from below the level of detection to 7.8 × 102 cells g dry wt–1 of rock sample, and the numbers of dentrifying bacteria ranged from below the level of detection to greater than 1.6 × 103 cells g dry wt–1 of rock sample. Offprint requests to: P. S. Amy.  相似文献   

10.
Subsurface sediments obtained from three cores drilled to depths of 260 m below the surface in South Carolina were analyzed for heterotrophic bacteria; N2‐fixing microaerophiles; and nitrifying, sulfur‐oxidizing, and H2‐oxidizing lithotrophic bacteria. In addition, pore waters were extracted for chemical analysis of inorganic nitrogen species, sulfate, dissolved organic carbon, pH, and Eh. Autotroph populations were generally less than 103 most probable number (MPN) g‐1 dry sediment with sulfur‐oxidizing bacteria, detected in 60% of the sediment samples, being the most frequently encountered group. Nitrifying bacteria were detected mainly in sediments from one borehole (P28), and their populations in those sediments were correlated with pore‐water ammonium concentrations. Populations of heterotrophic bacteria in 60% of the sediments were greater than 106 colony forming units (CFU) g‐1 dry sediment and were typically lower in sediments of high clay content and low pH. Microaerophilic N2‐fixing bacteria were cultured from >50% and bacteria capable of growth on H2 were cultured from 35% of the subsurface sediments examined. Sediment texture, which controls porosity, water potential, and hydraulic conductivity, appears to be a major factor influencing microbial populations in coastal plain subsurface sediments.  相似文献   

11.
We investigated the diversity and distribution of archaeal and bacterial 16S rRNA gene sequences in deep aquifers of mid‐ to late Miocene hard shale located in the northernmost region of the Japanese archipelago. A major fault in the north‐west–south‐east (NW–SE) direction runs across the studied area. We collected three groundwater samples from boreholes on the south‐west (SW) side of the fault at depths of 296, 374 and 625 m below ground level (m.b.g.l.) and one sample from the north‐east (NE) side of the fault at a depth of 458 m.b.g.l. The groundwater samples were observed to be neutral and weakly saline. The total microbial counts after staining with acridine orange were in the order 105?106 cells mL?1 and 103 cells mL?1 in the aquifers to the SW and to the NE of the fault, respectively. A total of 407 archaeal and bacterial 16S rRNA gene sequences (204 and 203 sequences, respectively) were determined for clone libraries constructed from all groundwater samples. Phylogenetic analyses showed that the libraries constructed from the SW aquifers were generally coherent but considerably different from those constructed from the NE aquifer. All of the archaeal clone libraries from the SW aquifers were predominated by a single sequence closely related to the archaeon Methanoculleus chikugoensis, and the corresponding bacterial libraries were mostly predominated by the sequences related to Bacteroidetes, Firmicutes and δ‐Proteobacteria. In contrast, the libraries from the NE aquifer were dominated by uncultured environmental archaeal clones with no methanogen sequences and by β‐proteobacterial clones with no sequences related to Bacteroidetes and δ‐Proteobacteria. Hence, the possible coexistence of methanogens and sulphate reducers in Horonobe deep borehole (HDB) on the SW side is suggested, particularly in HDB‐6 (374 m.b.g.l.). Moreover, these organisms might play an important geochemical role in the groundwater obtained from the aquifers.  相似文献   

12.
Summary Aerobic fermentation of swine waste combined with corn produced differences in microbial and biochemical patterns dependent on use of fresh or stored excrement. Lactic acid fermentation and odor control resulted with either waste. Homofermentative lactic acid bacteria were present initially at 107 organisms/dry g with stored waste-corn cultures and total microflora amounted to 108 organisms/dry g. Fresh waste-corn fermentations initially yielded heterofermentative lactic acid bacteria at 107 organisms/dry g and total viable population was 109 organisms/dry g. These respective groups of lactic acid bacteria dominated from 12 through 144 h in cultures with either waste, and acid production (0.2 meq/dry g) decreased pH by 2 units to 4.5. The major acid component with stored waste-corn was lactic acid, whereas fresh waste-corn fermentation produced both lactic and homologous fatty acids from acetic through valeric acid. Coliform bacteria present initially at 105 organisms/dry g in stored waste-corn cultures were not detected after 36 h; coliform bacteria in fresh waste-corn fermentations persisted at 106 organisms/dry g. A silage-like fermentation product resulted which may have use in animal feed formulations.  相似文献   

13.
At Titas, Bangladesh, two aquifers of different arsenic concentrations and redox conditions were investigated to link variations in geochemistry to in situ bacterial diversity characterized by T-RFLP (terminal restriction fragment length polymorphism) and clone library analysis. While the shallow aquifer was characterized by reduced gray sediments with a higher share of easily mobilized sedimentary arsenic (2.6% was easily mobilized from 18 mg/kg of total arsenic available in sediments) and higher aqueous arsenic concentrations of 120 ± 6 μg/L (45% arsenite), the deeper aquifer consisted of brown oxidized sediments with lower aqueous arsenic concentrations, predominantly as arsenate (60 ± 6 μg/L; 3% arsenite) and a higher share of tightly bound arsenic (only 0.6% of 53 mg/kg total sorbed arsenic was easily mobilized). The bacterial communities of both aquifers were dominated by putative aerobic or denitrifying populations of Pseudomonas, Elizabethkingia and Pantoea. The shallow aquifer was more diverse in bacterial populations of aerobic, facultative and anaerobic bacteria, an observation which may be correlated to more variable geochemical conditions resulting in arsenic mobilization and re-sorption. The deeper aquifer showed higher abundance of aerobic bacterial populations including the presence of iron-oxidizing Sideroxydans possibly of importance for the sorption of arsenic on oxidized iron hydroxides. From the arsenic-affected shallow aquifer, As(III) oxidizing isolates of Comamonas and Microbacterium were obtained, which may provide information on suitable conditions for arsenic immobilization useful for future bioremediation efforts. Supplemental materials are available for this article. Go to the publisher’s online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

14.
Helaeomyia petrolei larvae isolated from the asphalt seeps of Rancho La Brea in Los Angeles, Calif., were examined for microbial gut contents. Standard counts on Luria-Bertani, MacConkey, and blood agar plates indicated ca. 2 × 105 heterotrophic bacteria per larva. The culturable bacteria represented 15 to 20% of the total population as determined by acridine orange staining. The gut itself contained large amounts of the oil, had no observable ceca, and maintained a slightly acidic pH of 6.3 to 6.5. Despite the ingestion of large amounts of potentially toxic asphalt by the larvae, their guts sustained the growth of 100 to 1,000 times more bacteria than did free oil. All of the bacteria isolated were nonsporeformers and gram negative. Fourteen isolates were chosen based on representative colony morphologies and were identified by using the Enterotube II and API 20E systems and fatty acid analysis. Of the 14 isolates, 9 were identified as Providencia rettgeri and 3 were likely Acinetobacter isolates. No evidence was found that the isolates grew on or derived nutrients from the asphalt itself or that they played an essential role in insect development. Regardless, any bacteria found in the oil fly larval gut are likely to exhibit pronounced solvent tolerance and may be a future source of industrially useful, solvent-tolerant enzymes.  相似文献   

15.
Abstract To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower with the greatest concentrations (up to 4 × 105 cells/g dw) occurring at the border of the landfill and in samples collected from thin lenses of clay and silt with sand streaks. Cell number estimates based on ATP concentrations were also found to be lower than the direct count measurements (<2.2 × 106 cells/g dw), and with the greatest concentrations close to the landfill. Methanogens (Archaea) and reducers of sulfate, iron, manganese, and nitrate were all observed in the aquifer. Methanogens were found to be restricted to the most polluted and reduced part of the aquifer at a maximum cell number of 5.4 × 104 cells/g dw. Populations of sulfate reducers decreased with an increase in horizontal distance from the landfill ranging from a high of 9.0 × 103 cells/g dw to a low of 6 cells/g dw. Iron, manganese, and nitrate reducers were detected throughout the leachate plume all at maximum cell numbers of 106 cells/g dw. Changes in PLFA profiles indicated that a shift in microbial community composition occurred with increasing horizontal distance from the landfill. The types and patterns of lipid biomarkers suggested that increased proportions of sulfate- and iron-reducing bacteria as well as certain microeukaryotes existed at the border of the landfill. The presence of these lipid biomarkers correlated with the MPN results. There was, however, no significant correlation between the abundances of the specific PLFA biomarkers and quantitative measurements of redox processes. The application of AODC, MPN, PLFA, and ATP analyses in the characterization of the extant microbiota within the Grindsted aquifer revealed that as distance increased from the leachate source, viable biomass decreased and community composition shifted. These results led to the conclusion that the landfill leachate induced an increase in microbial cell numbers by altering the subsurface aquifer so that it was conducive to the growth of methanogens and of iron-and sulfate-reducing bacteria and fungi. Received: 11 June 1998; Accepted: 10 December 1998  相似文献   

16.
Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate‐respiring bacteria, were determined by DNA stable‐isotope probing. After incubation with 13C‐acetate and 13C‐lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.‐related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate‐respiring Sulfurospirillum spp. 13C‐acetate selected for ArrA related to Geobacter spp. whereas 13C‐lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA‐phylotype related to the sulphate‐reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X‐ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments.  相似文献   

17.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

18.
Abstract Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments (∼5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2‰) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones. Received: 10 November 1997; Accepted: 10 February 1998  相似文献   

19.
The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (<40 μg l−1) changes the microbial community composition. Sediment and groundwater samples were collected inside and outside the herbicide-exposed area and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (100 to 104 g−1 sediment) was determined by most probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophenoxyacetic acid degradation pathway genes tfdA and tfdB (102 to 103 gene copies g−1 sediment) were only detected in sediments from contaminated areas of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4′,6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer.  相似文献   

20.
Enterococcus spp. are utilized worldwide as faecal indicator bacteria, but certain strains exhibit extended survival in environmental habitats and the factors influencing their persistence are poorly understood. We used flowing freshwater mesocosms to explore the effect of submerged aquatic vegetation (SAV) on the persistence of natural enterococci populations from a subtropical lake. The highest mean densities of culturable enterococci over 2 weeks occurred in SAV [8.6 × 102 colony‐forming units (cfu) per 100 g wet weight], followed by sediments (1.3 × 102 cfu per 100 g) and water (18 cfu per 100 ml). However, due to relative differences in the total mass of each substrate in the entire system (water > sediments > SAV), SAV‐associated enterococci represented only a minor proportion of the total population. Vegetated mesocosms harboured significantly higher mean cfu per mesocosm and cfu densities in sediments compared with their unvegetated counterparts, suggesting that SAV indirectly facilitates persistence in aquatic habitats. Populations were dominated (> 96%) by a single Enterococcus casseliflavus strain according to BOX‐PCR genotyping, which did not change over the 10‐month study and strongly suggests bacterial replication in the lake. The presence of such strains in the environment may represent highly competitive, naturalized and reproducing indicator bacteria populations that are not directly related to pollution events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号