首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonium assimilation was studied in a nitrogenfixing Arthrobacter strain grown in both batch and ammonium-limited continuous cultures. Arthrobacter sp. fluorescens grown in nitrogen-free medium or at low ammonium levels assimilated NH 4 + via the glutamine synthetase/glutamate synthase pathway. When ammonium was in excess it was assimilated via the alanine dehydrogenase pathway. Very low levels of glutamate dehydrogenase were found, irrespective of growth conditions.Abbreviations GS glutamine synthetase - GOGAT glutamine oxoglutarate aminotransferase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

2.
Assimilation of inorganic nitrogen from nutrient-poor tropical seas is an essential challenge for the endosymbiosis between reef-building corals and dinoflagellates. Despite the clear evidence that reef-building corals can use ammonium as inorganic nitrogen source, the dynamics and precise roles of host and symbionts in this fundamental process remain unclear. Here, we combine high spatial resolution ion microprobe imaging (NanoSIMS) and pulse-chase isotopic labeling in order to track the dynamics of ammonium incorporation within the intact symbiosis between the reef-building coral Acropora aspera and its dinoflagellate symbionts. We demonstrate that both dinoflagellate and animal cells have the capacity to rapidly fix nitrogen from seawater enriched in ammonium (in less than one hour). Further, by establishing the relative strengths of the capability to assimilate nitrogen for each cell compartment, we infer that dinoflagellate symbionts can fix 14 to 23 times more nitrogen than their coral host cells in response to a sudden pulse of ammonium-enriched seawater. Given the importance of nitrogen in cell maintenance, growth and functioning, the capability to fix ammonium from seawater into the symbiotic system may be a key component of coral nutrition. Interestingly, this metabolic response appears to be triggered rapidly by episodic nitrogen availability. The methods and results presented in this study open up for the exploration of dynamics and spatial patterns associated with metabolic activities and nutritional interactions in a multitude of organisms that live in symbiotic relationships.  相似文献   

3.
The proposed similarity of conformation between α-lactalbumin (α-LA) and hen egg-white lysozyme was tested by the comparison of the thermodynamic parameters obtained from the temperature dependence of denaturation. For the denaturing reaction by guanidine hydrochloride, the value of ΔCP for α-LA is almost identical with that for lysozyme, which suggests that the amount of the hydrophobic side chains buried in the interior of the molecule is the same in the native state ; the value of ΔH° and ΔS° for α-LA are also close to those for lysozyme, and the small differences are explicable by the proposed molecular model of α-LA, which implies that the somewhat large difference in ΔG° observed previously between the two proteins does not originate from large conformational differences. These results support the conformational similarity between α-LA and lysozyme as represented by the molecular model. The heat-denatured state of α-LA is also characterized by the parameters and discussed.  相似文献   

4.
This study analyses patterns of sociopolitical incorporation among immigrant entrepreneurs in Ontario who entered Canada under the auspices of the federal Business Immigration Program [BIP] between 1984 and 1994. The analysis focuses specifically on issues of transnationalism, adaptation to mainstream social and political institutions, and citizenship. In-depth interviews of a sample of BIP entrepreneurs reveal that, over a period of eight to eighteen years, respondents generally achieved a high level of political awareness, maintained weak transnational ties, and naturalized at an extraordinarily high rate. In the process of sociopolitical integration, respondents relied primarily on human forms of capital, especially English language proficiency and business skills, rather than on the social capital that inheres in ethnic communities and networks.  相似文献   

5.
We measured the δ98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N2. This organism uses a Mo‐based nitrate reductase during nitrate utilization and a Mo‐based dinitrogenase during N2 fixation under culture conditions here. We also demonstrate that it has a high‐affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N2‐fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of ?0.2‰ to ?1.0‰ ± 0.2‰ between cells and media (εcells–media), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of ?0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N2, A. variabilis produced fractionations of ?0.9 ± 0.1‰ during exponential growth, and ?0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter‐bound Mo in marine sediments.  相似文献   

6.
Temperature-sensitive (Ts) mutants ofAnabœna variabilis exhibited differences in the rates of oxygen evolution at 28 and 40°C. They were unable to perform photosynthesis and nitrogen fixation at 40°C beyond a period of 3 d in a nitrogen-deficient medium. However, the addition of combined nitrogen sources enhanced the growth of all the Ts mutants at both temperatures. Studies on nitrate uptake ty Ts mutants revealed the existence of a low affinity system, whereK m values were found to be lower than 1 mmol/L. The activity of nitrate reductase gradually increased with time at 28°C with the exception of Ts-161 where the activity decreased with time at 40°C. The rate of ammonia uptake byA. variabilis and its Ts mutants greatly differed and the results suggest the existence of a single phase of uptake. The activity of glutamate-ammonia ligase (GAL) of the parent and Ts mutants was slightly higher in cells from nitrogen-deficient medium when compared to nitrate grown cells at 28°C. At 40°C, the GAL activity decreased after 3 d. The inability of the Ts mutants to grow at 40°C appears to be due to an impairment in nitrogen asimilation.  相似文献   

7.
Abstract

Ethnic and religious minority identity is a subject of intense public debate and academic scrutiny. While assimilation theories anticipate convergence of identity across the generations, discussions of reactive ethnicity, transnational identification and religious revival suggest that there may be a deepening or shifting of minority identity in the second generation. Yet the empirical evidence in support of these different perspectives is far from conclusive. Drawing on a rich data source for the UK, this paper addresses the question of whether minority ethnic groups in Britain show identity assimilation in the second generation. It concludes that both public and private forms of identification with the majority increase across generations, and minority identities tend to become less salient. This is true across ethnic groups, although there are differences in underlying levels and patterns of identity, reflecting variation in contexts of reception and migration.  相似文献   

8.
Andrews  Mitchell  Raven  John A. 《Plant and Soil》2022,476(1-2):31-62
Plant and Soil - Most terrestrial vascular plants can assimilate soil obtained NO3- in their root and shoot. Data from the literature are collated and analysed with respect to genotype and...  相似文献   

9.
Summary What digestive adaptations permit herbivorous nonruminant mammals to sustain much higher metabolic rates than herbivorous lizards, despite gross similarity in digestive anatomy and physiology? We approached this question by comparing four herbivorous species eating the same diet of alfalfa pellets: two lizards (chuckwalla and desert iugana) and two mammals (desert woodrat and laboratory mouse). The mammals had longer small and large intestines, greater intestinal surface area, much higher (by an order of magnitude) food intake normalized to metabolic live mass, and much faster food passage times (a few hours instead of a few days). Among both reptiles and mammals, passage times increase with body size and are longer for herbivores than for carnivores. The herbivorous lizards, despite these much slower passage times, had slightly lower apparent digestive efficiencies than the mammals. At least for chuckwallas, this difference from mammals was not due to differences in body temperature regime. Comparisons of chuckwallas and woodrats in their assimilation of various dietary components showed that the woodrat's main advantage lay in greater assimilation of the dietary fiber fraction. Woodrats achieved greater fiber digestion despite shorter residence time, but possibly because of a larger fermentation chamber, coprophagy, and/or different conditions for microbial fermentation. We conclude with a comparative overview of digestive function in herbivorous lizards and mammals, and with a list of four major unsolved questions.  相似文献   

10.
Dubinsky AY  Ivlev AA 《Bio Systems》2011,103(2):285-290
The computational analysis of the model system consisting of the processes of CO2 assimilation and photorespiration shows the appearance of sustained oscillations in the system which might reflect their presence in photosynthesizing cells. Concentrations of CO2 and O2 oscillate in opposite phases causing Rubisco switching continuously between the carboxylase (CO2 assimilation) and the oxygenase (photorespiration) reactions. The results of modeling are consistent with carbon isotopic and other observed data. They show that the oscillation period varies from about 1 s to 3 s depending on the values of parameters taken. Too high concentrations of O2 suppress the oscillations.  相似文献   

11.
Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II ( PS II) from fluorescence analysis and of CO2 assimilation ( ) in maize over a wide range of conditions. The ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize.  相似文献   

12.
Wild Type (WT) and transgenic tobacco plants expressing isopentenyltransferase (IPT), a gene encoding the enzyme regulating the rate-limiting step in cytokinins (CKs) synthesis, were grown under limited nitrogen (N) conditions. We analyzed nitrogen forms, nitrogen metabolism related-enzymes, amino acids and photorespiration related-enzymes in WT and PSARK∷IPT tobacco plants. Our results indicate that the WT plants subjected to N deficiency displayed reduced nitrate (NO3) assimilation. However, an increase in the production of ammonium (NH4+), by the degradation of proteins and photorespiration led to an increase in the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle in WT plants. In these plants, the amounts of amino acids decreased with N deficiency, although the relative amounts of glutamate and glutamine increased with N deficiency. Although the transgenic plants expressing PSARK∷IPT and growing under suboptimal N conditions displayed a significant decline in the N forms in the leaf, they maintained the GS/GOGAT cycle at control levels. Our results suggest that, under N deficiency, CKs prevented the generation and assimilation of NH4+ by increasing such processes as photorespiration, protein degradation, the GS/GOGAT cycle, and the formation of glutamine.  相似文献   

13.
Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer''s resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.  相似文献   

14.
A respiratory deficient mutant of Kluyveromyces fragilis was isolated using ethidium bromide mutagenesis. It was characterized by a loss of cytochromes a+a3 and deficiency in cytochrome b. This petite mutant has brought about modifications in the excretion pattern of -fructosidase active on saccharose and inulin. The mutant practically no longer excretes the enzyme, and is incapable of growth and fermentation in the presence of inulin. The study of the activities of different enzyme extracts (culture medium, whole and disrupted cells) on inulin and saccharose suggests the existence of an unique enzyme system capable of taking several form, and also shows the influence of the growth substrate on the I/S activity ratio.  相似文献   

15.
In larval spot, Leiostomus xanthurus Lacépède, 14C labeled food was rapidly digested and assimilated with up to 20% respired as 14CO2 within 10 h from ingestion. Two indices of carbon assimilation, total carbon utilization (range 9.4 to 64.7%) and total carbon absorption (range 67.2 to 99.2%) were calculated from the amount of 14C ingested, retained, and defecated. Carbon utilization and absorption were not significantly (P > 0.10) related to development as measured by age (7 to 47 days from hatching), length (1.8 to 11.4 mm), or dry weight (0.022 to 4.425 mg).  相似文献   

16.
Isoprene (2-methyl-1,3-butadiene) is a volatile hydrocarbon of uncertain function in Bacillus subtilis, and we hypothesized that it is an overflow metabolite produced during excess carbon utilization. Here we tested this idea for phase 2 of isoprene release, a phase that occurs during extracellular acetoin accumulation and its reassimilation. Phase 2 isoprene formation could be disrupted in three different ways, all related to acetoin metabolism. Disruption of a gene essential for acetoin biosynthesis (acetolactic acid synthase, alsS) blocked acetoin formation and led to cessation of phase 2 isoprene formation as well as a variety of pleiotropic effects related to loss of pH control. Growth of the alsS mutant with external pH control reversed most of these effects. Disruption of acetoin catabolism (acetoin dehydrogenase, acoA), also eliminated phase 2 isoprene formation and caused cells to transition directly from phase 1 to phase 3; the latter is attributed to amino acid catabolism. A third alteration of acetoin metabolism was detected in the widely used strain 168 (trpC2) but not in strain MS175, a trpC mutant constructed in the Marburg strain genetic background. Strain 168 exhibited slow acetoin assimilation compared to that of MS175 or the parental strain, with little or no isoprene formation during this growth phase. These findings support the idea that isoprene release occurs primarily when the rate of carbon catabolism exceeds anabolism and that this volatile hydrocarbon is a product of overflow metabolism when precursors are not required for higher isoprenoid biosynthesis. It is suggested that isoprene release might serve as a useful barometer of the rise and fall of central carbon fluxes during the growth of Bacillus strains in industrial bioreactors.  相似文献   

17.
Zusammenfassung 1. An Hand einer Literaturübersicht wird gezeigt, daß genug Beobachtungen und auch analytische Beweise für die Fähigkeit zur Luft-stickstoffassimilation bei zahlreichen Hefegattungén bereits vorlagen.2. Aus Larven vonRhagium inquisitor L. isolierte Hefe erwies sich identisch mitMycoderma bispora Baltatu und befähigt zur Assimilation elementaren Stickstoffs. Wir sind daher berechtigt, in den mit Hefen besiedelten Mycetomen holzfressender Käferlarven nicht allein Stätten der Vitaminsynthese, sondern auch der Stickstoffversorgung der Wirtstiere zu sehen.  相似文献   

18.
Net photosynthetic rate (P N) of leaves grown under free-air CO2 enriched condition (FACE, about 200 μmol mol−1 above ambient air) was significantly lower than P N of leaves grown at ambient CO2 concentration (AC) when measured at CO2 concentration of 580 μmol mol−1. This difference was found in rice plants grown at normal nitrogen supply (25 g m−2; NN-plants) but not in plants grown at low nitrogen supply (15 g m−2; LN-plants). Namely, photosynthetic acclimation to FACE was observed in NN-plants but not in LN-plants. Different from the above results measured in a period of continuous sunny days, such photosynthetic acclimation occurred in NN-plants, however, it was also observed in LN-plants when P N was measured before noon of the first sunny day after rain. Hence strong competition for the assimilatory power between nitrogen (N) and carbon (C) assimilations induced by an excessive N supply may lead to the photosynthetic acclimation to FACE in NN-plants. The hypothesis is supported by the following facts: FACE induced significant decrease in both apparent photosynthetic quantum yield (Φc) and ribulose-1,5-bisphosphate (RuBP) content in NN-plants but not in LN-plants.  相似文献   

19.
The relationship between the gas-exchange characteristics, the contents of photosynthetic intermediates and the quantum yield of photosystem II was examined at different intercellular partial pressures of CO2 (p i) in attached leaves of Moricandia arvensis L. (D.C.) and Flaveria floridana J.R. Johnson (both C3–C4 intermediate plants) and, for comparison, in F. pringlei Gandoger (a C3 plant) and in F. bidentis (a C4 plant). Both C3–C4 intermediate species had pools of phosphoenolpyruvate, pyruvate, alanine and aspartate intermediate to those of the C3 and C4 species examined. Moricandia arvensis had large pools of glycine at low p i, consistent with the operation of a glycine shuttle from mesophyll to bundle-sheath cells. It also had a high pool of triose-phosphate at ambient partial pressures of CO2, indicating that a glycerate-3-phosphate/triose-phosphate shuttle could operate in this species. This was not the case in F. floridana. A decline in the ribulose-1,5-bisphosphate and triose-phosphate pool in M. arvensis, and a rise in the pools of glycerate-3-phosphate and pyruvate in F. floridana, at low p i, show different patterns of metabolic regulation in M. arvensis and F. floridana at low p i in comparison to C3 and C4 plants.Abbreviations Frul,6bisP fructose-1,6-bisphosphate - PEP phosphoenolpyruvate PGA-glycerate-3-phosphate - p i intercelular CO2 pressure - PPFD photosynthetic photon flux density; - RuBP ribulose-1,5-bisphosphate - triose-P triose phosphates This work was done while R.C.L. was a Visiting Fellow at the Australian National University, and was sponsored by the Royal Society. We are grateful to Kathy Britt for assistance with the analysis of amino acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号