首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to various activities associated with nuclear industry, uranium is migrated to aquatic environments like groundwater, ponds or oceans. Uranium forms stable carbonate complexes in the oxic waters of pH 7–10 which results in a high degree of uranium mobility. Microorganisms employ various mechanisms which significantly influence the mobility and the speciation of uranium in aquatic environments. Uranyl bioremediation studies, this far, have generally focussed on low pH conditions and related to adsorption of positively charged UO2 2+ onto negatively charged microbial surfaces. Sequestration of anionic uranium species, i.e. [UO2(CO3) 2 2? ] and [UO2(CO3) 3 4? ] onto microbial surfaces has received only scant attention. Marine cyanobacteria are effective metal adsorbents and represent an important sink for metals in aquatic environment. This article addresses the cyanobacterial interactions with toxic metals in general while stressing on uranium. It focusses on the possible mechanisms employed by cyanobacteria to sequester uranium from aqueous solutions above circumneutral pH where negatively charged uranyl carbonate complexes dominate aqueous uranium speciation. The mechanisms demonstrated by cyanobacteria are important components of biogeochemical cycle of uranium and are useful for the development of appropriate strategies, either to recover or remediate uranium from the aquatic environments.  相似文献   

2.
Cytochrome c3 of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c3 in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c3 (cycA) to lacZ. Instead, cytochrome c3 protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c3 with U(IV) was interpreted to be non-specific, since pure cytochrome c3 adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe2O3), and commercially available U(IV) oxide.An erratum to this article can be found at  相似文献   

3.
Respiration of four freshwater species of the amphipod crustacean Gammarus: G. fossarum, G. lacustris (river and lake), G. pulex and G. roeseli were measured in a closed, stirred respirometric chamber with a micro-electrode. Oxygen consumption, expressed as weight-specific oxygen uptake (Rs) in relation to decreasing oxygen concentration, varied at air saturation from 0.86 (G. lacustris, lake) to 2.06 μl O2 mg−1 AFDW h−1 (G. pulex). Rs also differed intra-specifically among the two populations of G. lacustris. G. lacustris (river), G. pulex and G. roeseli expressed moderate ability to regulate their oxygen consumption at decreasing oxygen concentrations, whereas the regulation ability was higher in G. lacustris (lake) and in G. fossarum, which maintain high oxygen uptake at oxygen levels >2 mg O2 l−1. All four Gammarus species are partial regulators in response to variations in oxygen concentration. The differences between species are considered too small to account for their natural distributions. It appears that the tolerances of Gammarus species to organic pollution depend only in part on oxygen conditions.  相似文献   

4.
G-protein coupled receptors (GPCRs) form a ternary complex of agonist, receptor and G-proteins during primary signal transduction at the cell membrane. Downstream signalling is thought to be preceded by the process of dissociation of Gα and Gβγ subunits, thus exposing new surfaces to interact with downstream effectors. We demonstrate here for the first time, the dissociation of heterotrimeric G-protein subunits (i.e., Gα and Gβγ) following agonist-induced GPCR (α2A-adrenergic receptor; α2A-AR) activation in a cell-free assay system. α2A-AR membranes were reconstituted with the G-proteins (±hexahistidine-tagged) Gαi1 and Gβ1γ2 and functional signalling was determined following activation of the reconstituted receptor:G-protein complex with the potent agonist UK-14304, and [35S]GTPγS. In the presence of Ni2+-coated agarose beads, the activated his-tagged Gαi1his-[35S]GTPγS complex was captured on the Ni2+-presenting surface. When his-tagged Gβ1γ2 (Gβ1γ2his) was used with Gαi1, the [35S]GTPγS-bound Gαi1 was not present on the Ni2+-coated beads, but rather, it was separated from the β1γ2(his)-beads, demonstrating receptor-induced dissociation of Gα and Gβγ subunits. Treatment of the reconstituted α2A-AR membranes containing Gβ1γ2his:Gαi1 with imidazole confirmed the specificity for the Ni2+:G-protein surface dissociation of Gαi1 from Gβ1γ2his. These data demonstrate for the first time, the complete dissociation of the G-protein subunits and extend observations on the role of G-proteins in the assembly and disassembly of the ternary complex in the primary events of GPCR signalling.  相似文献   

5.
Low temperature 31P and 15N NMR spectroscopy was used to investigate the species forming in the organic layer following the extraction of uranium from nitric acid solutions with di-2-ethylhexyl phosphoric acid. It was found that uranium is extracted from neutral solutions as the 1:2 complex UO2A2 regardless of what anion is present. For dilute nitric acid solutions, the uranium is extracted both as associated and mixed nitrato species. As the nitric acid concentration of the aqueous layer increases, the mixed nitrato complex, UO2(NO3)A·HA, becomes predominant.  相似文献   

6.
Summary The feasibility of bacterial recovery of uranium from the low grade black schists occurring in the Okcheon district, South Korea, was investigated. Following the introduction of Acidithiobacillus ferrooxidans, 80% of the uranium could be extracted from the schists, which contain 0.01% U3O8 by weight, within 60 h at a pulp density of 100 g-ore/l. Only 18% of the uranium was extracted without microbial activity. The uranium-leaching efficiency was not greatly affected by the addition of Fe2+ in the range of 5–9 g/l, and the leaching efficiency of uranium from the schists by A. ferrooxidanscould be efficiently maintained at high pulp densities (up to 500 g-ore/l).  相似文献   

7.
The effects of various metabolites on the two most common phosphoglucomutase allozymes (PGMA and PGMB) in Drosophila melanogaster have been investigated in vitro. 2,3-Diphosphoglycerate (2,3DPG) inhibited PGMA and PGMB to the same degree in the presence of 25 µM glucose-1,6-diphosphate (G1, 6P2). However a higher concentration of G1,6P2 partially reversed the inhibition of PGMA exerted by 2,3DPG, so that in the presence of 150 µM G1,6P2 the inhibition of PGMA was half that of PGMB at pH 6.0. Glycerol-3-phosphate (G3P) had no significant effect at pH 7.4 but exerted an activating effect at pH 6.0 which was more pronounced in the case of PGMB. ATP, citrate, and fructose-1, 6-diphosphate (F1,6P2) inhibited both PGMA and PGMB. The differences found in vitro between these two allozymes can have a significant impact on in vivo function and, therefore, on the maintenance of PGM polymorphism in experimental populations of D. melanogaster studied in the laboratory.  相似文献   

8.
Abstract: We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 μM) and the nonmetabolized analogue of GTP, guanyl-5′-yl-imidodiphosphate (GppNHp; 100 μM). Competition studies with bradykinin and with [Hyp3]-bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 μM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]-bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 μM) and GDP (100 μM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 μM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides. These data provide further evidence for three subtypes of B2-type bradykinin receptors in guinea pig.  相似文献   

9.
Geoactive soil fungi were investigated for phosphatase‐mediated uranium precipitation during growth on an organic phosphorus source. Aspergillus niger and Paecilomyces javanicus were grown on modified Czapek–Dox medium amended with glycerol 2‐phosphate (G2P) as sole P source and uranium nitrate. Both organisms showed reduced growth on uranium‐containing media but were able to extensively precipitate uranium and phosphorus‐containing minerals on hyphal surfaces, and these were identified by X‐ray powder diffraction as uranyl phosphate species, including potassium uranyl phosphate hydrate (KPUO6.3H2O), meta‐ankoleite [(K1.7Ba0.2)(UO2)2(PO4)2.6H2O], uranyl phosphate hydrate [(UO2)3(PO4)2.4H2O], meta‐ankoleite (K(UO2)(PO4).3H2O), uramphite (NH4UO2PO4.3H2O) and chernikovite [(H3O)2(UO2)2(PO4)2.6H2O]. Some minerals with a morphology similar to bacterial hydrogen uranyl phosphate were detected on A. niger biomass. Geochemical modelling confirmed the complexity of uranium speciation, and the presence of meta‐ankoleite, uramphite and uranyl phosphate hydrate between pH 3 and 8 closely matched the experimental data, with potassium as the dominant cation. We have therefore demonstrated that fungi can precipitate U‐containing phosphate biominerals when grown with an organic source of P, with the hyphal matrix serving to localize the resultant uranium minerals. The findings throw further light on potential fungal roles in U and P biogeochemistry as well as the application of these mechanisms for element recovery or bioremediation.  相似文献   

10.
In tropical Australian freshwaters, uranium (U) is of potential ecotoxicological concern, largely as a consequence of mining activities. Although the toxicity of uranium to Australian freshwater biota is comprehensive, by world standards, few data are available on the effects of physicochemical variables, such as hardness, alkalinity, pH and organic matter, on uranium speciation and bioavailability. This study determined the individual effects of water hardness (6.6, 165 and 330 mg l-1 as CaCO3) and alkalinity (4.0 and 102 mg l-1 as CaCO3), at a constant pH (6.0), on the toxicity (96 h population growth) of uranium to Hydra viridissima (green hydra). A 50-fold increase in hardness (Ca and Mg concentration) resulted in a 92% (two-fold) decrease in the toxicity of uranium to H. viridissima [i.e. an increase in the EC50 value and 95% confidence interval from 114 (107-121) to 219 (192-246) µg l-1]. Conversely, at a constant hardness (165 mg l-1 as CaCO3), the toxicity of uranium to H. viridissima was not significantly (P > 0.05) affected by a 25-fold increase in alkalinity (carbonate concentration) [i.e. EC50 values of 177 (166-188) and 171 (150-192) µg l-1 at 4.0 and 102 mg l-1 as CaCO3, respectively]. A knowledge of the relationship between water chemistry variables, including hardness and alkalinity, and uranium toxicity is useful for predicting the potential ecological detriment in aquatic systems, and can be used to relax national water quality guidelines on a site-specific basis.  相似文献   

11.
A rat monoclonal IgG2a antibody, 5G11, was raised against native human platelet thrombospondin (TSP). Western blot analysis revealed that 5G11 bound (i) to TSP before and after disulfide reduction, and (ii) to a 15-kDa fragment released after prolonged trypsin digestion. Crossed immunoelectrophoresis confirmed that the binding epitope was expressed in the presence of Ca2+ and after treatment of TSP with EDTA. Since 5G11 had no effect on platelet aggregation, the antibody was used to immunoprecipitate Ca2+-dependent and Ca2+-independent TSP-binding molecules on the surface of thrombin-activated surface-labeled 125I-platelets. The experimental basis was that ligand-receptor interactions are of high affinity and that anti-ligand antibodies should precipitate the ligand-receptor complex. With platelets activated in the presence of EDTA, 5G11 predominantly precipitated a 125I-labeled band of Mr 88 000, identified as glycoprotein (GP) IV. In contrast, in the presence of 2 mM Ca2+ and 1 mM Mg2+, 5G11 precipitated a complex of five radiolabeled proteins, among which GPIIb, GPIIIa and GPIV were the most prominent.  相似文献   

12.
Wang  Xiulin  Zauke  Gerd-Peter 《Hydrobiologia》2002,482(1-3):179-189
More than 10000 specimens of the amphipod Gammarus zaddachiwere collected from the River Hunte (Huntebrück, Germany) in January, April, July and September 1999 and Jan 2000 to analyse relationships between body-length distributions, growth and the permeable body surface area (from which ions can enter the cell) as indicated by the acid–base titration method. Thus, body wet weights (BWWs), dry weights (BDWs), length (BL), surface area and specific surface area were measured. Mean BWWs were 56.0 mg, BDWs 11.1 mg and BLs 16.4 mm. The relationship between BDW and BL could be successfully described by the power-function: BDW=0.0029×BL 2.88, probably indicating that the body volume of the test animals can be approximately expressed by an `equal-effectiveness ball'. The body-length distributions were analysed using two combined normal-distribution equations, suggesting that the population of G. zaddachi at Huntebrück was composed of two generations. A sigmoid logistic equation was applied to estimate the body length-based growth. It can be inferred that the reproduction must have occurred around October to December 1998 and that the size of juveniles in the brood pouch was 0.1 mm. The permeable body surface area (ABSA) of G. zaddachi was measured by applying the acid–base titration method, with an average measurement accuracy of 13.7%. ABSA ranged from 17.1 to 236.9 cm2 animal–1 in a variety of the body lengths studied. The specific surface areas (SSA), equivalent to the ratio of permeable body surface area to body volume, decreased from 14.2 to 8.5 cm2 mg–1 (dry wt) as BL increased from 8.1 to 18.6 mm and then remained nearly constant up to 24.1 mm, indicating a single exponential decay relationship between SSA and BL. Mean body length (BL mean) of G. zaddachi collected simultaneously at Huntebrück increased seasonally from 0.1 mm in autumn–winter to 17.6 in next winter–spring, resulting in an increase of ABSA but a decrease of SSA. Our present results provide a sound and necessary basis for a quantitative study not only on the age-dependent biological/physiological conditions but also on size-dependent bioconcentration of metal by gammaridean amphipods.  相似文献   

13.
Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit, AGB1, is required for four guard cell Cao responses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cyt oscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements of agb1 mutants and agb1/gpa1 double‐mutants, as well as those of the agg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast with ABA‐regulated stomatal movements, which involve GPA1 and AGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. AGB1 knockouts retained reactive oxygen species and NO production, but lost YC3.6‐detected [Ca2+]cyt oscillations in response to Cao, initiating only a single [Ca2+]cyt spike. Experimentally imposed [Ca2+]cyt oscillations restored stomatal closure in agb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed that AGB1 interacts with phospholipase Cs (PLCs), and Cao induced InsP3 production in Col but not in agb1. In sum, G‐protein signaling via AGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Cao apparently require Ca2+‐induced Ca2+ release that is likely dependent on Gβγ interaction with PLCs leading to InsP3 production.  相似文献   

14.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

15.
Conformational preferences of the modified nucleosides N2-methylguanosine (m2G) and N2, N2-dimethylguanosine (m22G) have been studied theoretically by using quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. Automated complete geometry optimization using semiempirical quantum chemical RM1, along with ab initio molecular orbital Hartree–Fock (HF-SCF), and density functional theory (DFT) calculations has also been made to compare the salient features. Single-point energy calculation studies have been made on various models of m2G26:C/A/U44 and m22G26:C/A/U44. The glycosyl torsion angle prefers “syn” (χ = 286°) conformation for m2G and m22G molecules. These conformations are stabilized by N(3)–HC2′ and N(3)–HC3′ by replacing weak interaction between O5′–HC(8). The N2-methyl substituent of (m2G26) prefers “proximal” or s-trans conformation. It may also prefer “distal” or s-cis conformation that allows base pairing with A/U44 instead of C at the hinge region. Thus, N2-methyl group of m2G may have energetically two stable s-trans m2G:C/A/U or s-cis m2G:A/U rotamers. This could be because of free rotations around C–N bond. Similarly, N2, N2-dimethyl substituent of (m22G) prefers “distal” conformation that may allow base pairing with A/U instead of C at 44th position. Such orientations of m2G and m22G could play an important role in base-stacking interactions at the hinge region of tRNA during protein biosynthesis process.  相似文献   

16.
The speciation of a particular element in any given matrix is a prerequisite to understanding its solubility and leaching properties. In this context, speciation of uranium in lanthanum zirconate pyrochlore (La2Zr2O7 = LZO), prepared by a low‐temperature combustion route, was carried out using a simple photoluminescence lifetime technique. The LZO matrix is considered to be a potential ceramic host for fixing nuclear and actinide waste products generated during the nuclear fuel cycle. Special emphasis has been given to understanding the dynamics of the uranium species in the host as a function of annealing temperature and concentration. It was found that, in the LZO host, uranium is stabilized as the commonly encountered uranyl species (UO22+) up to a heat treatment of 500 °C at the surface. Above 500 °C, the uranyl ion is diffused into the matrix as the more symmetric octahedral uranate species (UO66–). The uranate ions thus formed replace the six‐coordinated ‘Zr’ atoms at regular lattice positions. Further, it was observed that concentration quenching takes place beyond 5 mol% of uranium doping. The mechanism of the quenching was found to be a multipolar interaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The G2ALT gene was cloned and sequenced from the thermophilic bacterium Anoxybacillus gonensis G2. The gene is 666 bp long and encodes a protein 221 amino acids in length. The gene was overexpressed in E. coli and purified to homogeneity and biochemically characterized. The enzyme has a molecular mass of 24.5 kDa and it could be classified as a member of the family of bacterial aluminium resistance proteins based on homology searches. When this fragment was expressed in E. coli, it endowed E. coli with Al tolerance to 500 μM. The purified G2ALT protein is active at a broad pH range (pH 4.0–10.0) and temperature range (25°C–80°C) with optima of 6.0 and the apparent optimal temperature of 73°C respectively. Under optimal conditions, G2ALT exhibited a low ATPase activity with K m and V max values of 10±0.55 μM and 26.81±0.13 mg Pi released/min/mg enzyme, respectively. The ATPase activity of G2ALT requires Mg2+ and Na+ ions, while Zn2+ and Al3+ stimulate the activity. Cd2+ and Ag+ reduced the activity and Li+, Cu2+, and Co2+ inhibited the activity. Known inhibitors of most ATPases, like such as β-mercaptoethanol and ouabain, also inhibited the activity of the G2ALT. These biochemical characterizations suggested that G2ALT belongs to the PP-loop ATPase superfamily and it can be responsible for aluminium tolerance in A. gonensis G2.  相似文献   

18.
Summary Uranyl sulphate (0.2–0.9 mM) inhibited ferrous iron oxidation by growing cultures ofThiobacillus ferrooxidans. The addition of 5–100 mM uranium to the cultures caused immediate cessation of carbon dioxide fixation, rapid loss of viability and gradual depression of ferrous iron oxidation. Virtually no uranium was found in washed cells grown in the presence of subtoxic to toxic amounts of uranyl sulphate. Uranium-poisoned organisms appeared plasmolyzed in electron micrographs. Cultures tolerant to 5 mM UO2 2+ were develoepd by successive subculturing in increased uranium concentrations. The tolerance was maintained during subculturing in uranium-free medium. Frequency of mutants resistant to 1.0 and 1.5 mM UO2 2+ was 1 per 1.3×106 and 1 per 9.0×108, respectively. The frequency was increased in the presence of 15–150 mM nickel, zinc and manganese. In liquid cultures, bivalent cations and EDTA alleviated the toxicity of 2 mM uranyl sulphate.  相似文献   

19.
Recovery of uranium by immobilized microorganisms   总被引:2,自引:0,他引:2  
Summary Some attempts were made to recover uranium from sea and fresh water using immobilized Streptomyces viridochromogenes and Chlorella regularis cells. The cells immobilized in polyacrylamide gel have the most favorable features for uranium recovery; high adsorption ability, good mechanical properties, and applicability in a column system. The adsorption of uranium by the immobilized cells is not affected by the pH values between 4 and 9. These results show that uranium adsorption becomes independent of pH after immobilization. The amounts of uranium adsorbed by the immobilized cells increased linearly with temperature, suggesting that the adsorption of uranium by the immobilized cells is an endothermic reaction. The immobilized cells can recover uranium almost quantitatively from both fresh and sea water containing uranium, and almost all uranium adsorbed is desorbed with a solution of Na2CO3. Thus the immobilized cells of Streptomyces and Chlorella can be used repeatedly in adsorption-desorption process.Studies on the Accumulation of Heavy Metal Elements in Biological Systems. XXI  相似文献   

20.
The respiratory tract pathogen Streptococcus pneumoniae encounters different levels of environmental CO2 during transmission, host colonization and disease. About 8% of all pneumococcal isolates are capnophiles that require CO2‐enriched growth conditions. The underlying molecular mechanism for caphnophilic behaviour, as well as its biological function is unknown. Here, we found that capnophilic S. pneumoniae isolates from clonal complex (CC) 156 (i.e. Spain9V‐3 ancestry) and CC344 (i.e. NorwayNT‐42 ancestry) have a valine at position 179 in the MurF UDP‐MurNAc‐pentapeptide synthetase. At ≤ 30°C, the growth characteristics of capnophilic and non‐capnophilic CC156 strains were equal, but at > 30°C growth and survival of MurFV179 strains was dependent on > 0.1% CO2‐enriched conditions. Expression of MurFV179 in S. pneumoniae R6 and G54 rendered these, otherwise non‐capnophilic strains, capnophilic. Time‐lapse microscopy revealed that a capnophilic CC156 strain undergoes rapid autolysis upon exposure to CO2‐poor conditions at 37°C, and staining with fluorescently labelled vancomycin showed a defect in de novo cell wall synthesis. In summary, in capnophilic S. pneumoniae strains from CC156 and CC344 cell wall synthesis is placed under control of environmental CO2 levels and temperature. This mechanism might represent a novel strategy of the pneumococcus to rapidly adapt and colonize its host under changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号