首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.  相似文献   

2.
Copper,Lead, Cadmium,and Zinc Sorption By Waterlogged and Air-Dry Soil   总被引:1,自引:0,他引:1  
Competitive sorption of copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) was studied in three soils of contrasting chemical and physical properties under air-dry and waterlogged conditions. Competitive sorption was determined using the standard batch technique using six solutions, each with Cu, Pb, Cd, and Zn concentrations of approximately 0, 2.5, 5, 10, 20, and 50?mg L?1Waterlogged soils tended to sorb higher amounts of added Cu, Pb, Zn and Cd relative to soils in the air-dry condition; however, this increase in sorption was generally not statistically (p<0.05) significant. The magnitude of sorption under both waterlogged and air-dry conditions was affected by the type and amount of soil materials involved in metal sorption processes, and competition between other metals for the sorption sites. Metal sorption was closely correlated with soil properties such as cation exchange capacity, organic carbon, and Fe and Mn hydrous oxides. Exchangeable Al may have markedly reduced metal sorption due to its strong affinity for the sorption sites, while increases in exchangeable Mn may have enhanced Zn and Cd sorption. Heavy metal sorption was best described as a combination of both specific and nonspecific interactions. The extractability of Cu, Pb, Cd, and Zn under waterlogged and air-dry conditions was also studied. Three solutions containing these metals were mixed with each soil to achieve a final concentration of 0, 50, and 500?mg kg?1. Each soil was extracted every 7 days using 1?M MgCl2 (pH 7) to determine metal extractability. Metal extractability initially decreased then increased due to waterlogging. The increased extractability of added metals was closely related to increased solubility of Fe and Mn suggesting that dissolution of Fe and Mn, oxides under reducing conditions caused a release of previously sorbed Cu, Pb, Cd, and Zn.  相似文献   

3.
Marine agglomerates were collected by SCUBA from surface watersof Monterey Bay, California and one coastal site 100 km offPoint Sur, California using trace metal clean techniques. Concentrationsof Al, Fe, Mn, Cu, Ni, Zn, Cd and Pb were measured for bothweak acid soluble and refractory metals and compared to suspendmaterial collected in water bottles at the same locations. Gravimetricanalysis of agglomerate and surrounding suspended particulatematter indicated that although agglomerates represented <0.1%of total water sample volume (determined photographically),they contained up to 50% of the total particulate dry weight;trace metal concentrations in the agglomerate fraction werealso disproportionately high. Agglomerates collected withinMonterey Bay contained large quantitites of inorganic material(>40% dry weight), with most of the associated metals containedprimarily within the refractory fraction. In contrast, the offshorestation agglomerates contained <0.3% inorganic material withmetals primarily associated with the weak acid soluble fraction.Both the metal concentrations and leach characteristics of theoffshore station suggest that these agglomerates were comprisedof an active phytoplankton assemblage highly enriched in Cd.Metal concentrations in the offshore samples in conjunctionwith agglomerate abundance indicate that agglomerates may bea major transporter of trace metals out of the euphotic zone.  相似文献   

4.
泉州湾洛阳江河口沉积物中磷的形态分布   总被引:2,自引:0,他引:2  
分析了泉州湾洛阳江河口沉积物中总磷及5种形态磷(可交换态磷(DP)、铁铝结合态磷(Fe/Al-P)、钙结合态磷(Ca-P)、有机磷(OP)和闭蓄态磷(Re-P))的含量,探讨了它们的垂向分布特征、相互关系及环境指示意义。结果表明:沉积物中的总磷(TP)以无机磷为主,占TP比例76%~89%;除可交换态磷外,沉积物中形态磷的垂向分布规律具有相似性,大体随深度增加而减小,且在表层有富集现象,反映了沉积物中总磷和各形态磷的分布受人类活动影响较明显;通过相关性分析,钙结合态磷是总磷和无机磷的主要控制因素,而总磷和其他形态磷(除了可交换态磷外)相互间均具有显著相关性,且有机质对各形态磷的分布均有一定影响;TP和各形态磷含量,以及(Fe/Al-P)/TP、Ca-P/TP、OP/TP都在同一层出现了显著变化,反映了水利设施和围垦工程对沉积环境和各形态磷迁移转化有较大影响。  相似文献   

5.
A simultaneous (SIM) sediment extraction procedure for low carbonate sediments, which partitions sediment-bound trace metals (Fe, Mn, Zn, Cu, and Cd) into easily reducible (associated with Mn oxides), reducible (associated with Fe oxides) and alkaline extracted (bound to organic) metal is presented. The SIM method was compared to the sequential (SEQ) extraction procedure of Tessier et al. (1979). Both methods showed good agreement for the partitioning of Zn and Cd among the easily reducible, reducible and organic components of sediment. Both methods also showed the same general distribution of Mn, Fe and Cu among the three sediment components, however concentrations of metals recovered by the two methods differed; less Mn and Fe and more Cu was recovered from sediments by the SEQ vs. the SIM procedure. Less recovery of Mn is in part attributed to the loss of this metal in the `in between' reagent rinses required in the SEQ procedure. Greater recovery of Cu by the SEQ vs. the SIM method may be due to the pretreatment of sediment with strong reducing agents prior to the step used for liberating organically bound metals. Advantages of a SIM over the SEQ include rapid sample processing time (i.e. the treatment of 40 samples per day vs. 40 samples in three days), plus minimal sample manipulation. Hence, for partitioning metals into easily reducible, reducible and organic sediment components in sediments low in carbonate, we recommend the use of a SIM extraction over that of a SEQ procedure.  相似文献   

6.
Cryptoendolithic (hidden in rock) lichen-dominated microbial communities from the Ross Desert of Antarctica were shown to produce oxalate (oxalic acid). Oxalate increased mineral dissolution, which provides nutrients, creates characteristic weathering patterns, and may ultimately influence the biological residence time of the community. Oxalate was the only organic acid detectable by HPLC, and its presence was verified by GC/MS. Community photosynthetic metabolism was involved in oxalate production since rates of 14C-oxalate production from 14C02 were higher in light than in dark incubations. Flaking of the sandstone at the level of the lichen-dominated zone a few millimeters beneath the rock surface can be explained by dissolution of the sandstone cement, which was enhanced by Si, Fe, and Al oxalate complex formation. Added oxalate was observed to increase the solubility of Si, Fe, Al, P, and K. Oxalate's ability to form soluble trivalent metal-oxalate complexes correlated with the observed order of metal oxide depletion from the lichen-dominated zone (Mn > Fe > Al). Thermodynamic calculations predict that Fe oxalate complex formation mobilizes amorphous Fe oxides (ferrihydrite) in the lichen-dominated zone, and where oxalate is depleted, ferrihydrite should precipitate. Hematite, a more crystalline Fe oxide, should remain solid at in situ oxalate concentrations. Oxalate was not a carbon source for the indigenous heterotrophs, but the microbiota were involved in oxalate mineralization to CO2, since oxalate mineralization was reduced in poisoned incubations. Photooxidation of oxalate to C02 coupled with photoreduction of Fe(Ill) may be responsible for oxalate removal in situ, since rates of 14C-oxalate mineralization in dark incubations were at least 50% lower than those in the light. Removal of oxalate from Si, Fe, and Al complexes should allow free dissolved Si, Fe, and Al to precipitate as amorphous silicates and metal oxides. This may explain increased siliceous crust (rock varnish or desert varnish) formation near the surface of colonized rocks were light intensity is greatest.Offprint requests to: C.G. Johnston.  相似文献   

7.
Summary Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic‐Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic‐Fe(III) complexes to include Shewanella oneidensis MR‐1. Soluble organic‐Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O2, nitrate or trimethylamine‐N‐oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic‐Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)‐citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic‐Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild‐type and Sol mutant strains, and all four Sol mutants retained wild‐type siderophore production capability. Results of this study indicate that the production of soluble organic‐Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.  相似文献   

8.
The A‐01 wetland treatment system (WTS) was designed to remove metals from an industrial effluent at the Savannah River Site, Aiken, SC. Sequential extraction data were used to evaluate remobilization and retention of Cu, Pb, Zn, Mn, and Fe in the wetland sediment. Remobilization of metals was determined by the Potentially Mobile Fraction (PMF) and metal retention by the Recalcitrant Factor (RF). The PMF, which includes water soluble, exchangeable, and amorphous oxides fractions, is the contaminant fraction that has the potential to enter into the mobile aqueous phase under fluctuating environmental conditions. PMF values were low for Cu, Zn, and Pb (13–27 %) and high for Fe and Mn (62–70 %). The RF, which includes crystalline oxides, sulfides or silicates and aluminosilicates, is the ratio of strongly bound fractions to the total concentration of elements in sediment. RF values ranged from 73–87 % for Cu, Zn, and Pb, indicating high retention in the sediment and from 30–38 % for Fe and Mn, indicating low retention. Contaminant retention, which is determined by solid phase metal speciation, determines the potential mobility and bioavailability of captured metals in wetland sediments; hence, their likelihood of being released if chemical, physical, or biological conditions within the wetland change.  相似文献   

9.
Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.  相似文献   

10.
The present work investigates the adsorption of As(V) onto the dried powder of alligator weed root as bio-sorbent, using acid pre-treated alligator weed root powder as the reference. The isotherm study suggested there is a favorable As(V) adsorption happened on the AWR surface. The batch adsorption experimental results indicated that the ionic strength has little impact on the adsorption, while the solution pH has a significant effect on the adsorption with apparent inhibition appearing in both extreme acidic and alkaline pH region. In addition, the properties of the biosorbent were characterized by various techniques including SEM-EDS, FT-IR, and ICP detection. The analysis results suggested that the metals including Mn, Fe, and Al enrich over the alligator weed root surface in the morphology of metal (hydro) oxide. Based on the nature of the biosorbent and As(V) besides the adsorption performance, the metal (hydro) oxides over biosorbent surface is suggested as the essential role to drive the adsorption. With the metal (hydro) oxides denuded in the pre-treatment, the biosorbent loses its adsorption capability for As(V) totally.  相似文献   

11.
Trace metals in Swedish natural fresh waters   总被引:2,自引:0,他引:2  
Hans Borg 《Hydrobiologia》1983,101(1-2):27-34
Water samples were collected from unpolluted waters in southern and northern Sweden to show the range of natural trace metal concentrations. The results do not indicate any significant differences in metal levels between the two study areas. Negative correlations with pH exist for total concentrations of Cd, Pb, Al, Mn and Zn. The dissolved (dialysable) metal fractions also increase with increasing acidity. The concentration of humic substances influences the distribution of Fe, Mn, Al, Pb, Cr, Co and As, as shown by positive correlations with water colour.Increasing alkalinity has a limiting effect upon concentrations and annual fluctuations of Cd and Pb, and to some extent on Zn, in running waters.  相似文献   

12.
中国树花对乌鲁木齐南郊空气污染生物指示的研究   总被引:4,自引:1,他引:3  
目的:中国树花对乌鲁木齐南郊空气污染生物指示作用的探讨。方法:采用电感耦合等离子光谱直读法测定移植地衣内重金属含量的变化。结果:地衣体内被测定出的重金属元素种类和含量与移植时间的长短之间存在显著性差异。对照组中,中国树花体内仅测出2种元素,其中Fe和Mn的含量分别为1.2915&#177;0.054μg.g-1和0.0261&#177;0.001μg.g-1。移植1个月后测出Al、Fe、Mn、Zn等4种元素,其含量分别为0.68&#177;0.036、0.706&#177;0.086、0.021&#177;0.016和0.061&#177;0.005μg.g-1;移植3个月后测出Al、Cr、Cu、Fe、Mn、Ni、Zn等7种重金属,其含量分别为0.285&#177;0.039、0.0032&#177;0.001、0.004&#177;0.002、0.499&#177;0.133、0.106&#177;0.015、0.011&#177;0.01、0.011&#177;0.01、0.038&#177;0.002μg.g-1。结论:中国树花在生物评价乌鲁木齐南郊空气污染方面具有一定的研究价值。  相似文献   

13.
Heavy metal‐contaminated, pH 6 mine water discharge created new streams and iron‐rich terraces at a creek bank in a former uranium‐mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron‐oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high‐metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella‐like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6‐month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% of Bacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella‐related sequences had ≥97% identity to the putatively metal‐tolerant ‘Gallionella capsiferriformans ES‐2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R‐1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM‐energy‐dispersive X‐ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of ‘G. capsiferriformans’ and biogenic iron oxides in slightly acidic but highly metal‐contaminated freshwater environments.  相似文献   

14.
A free water surface wetland was built in 2002 to treat wastewater from a tool factory containing metals (Cr, Ni, Zn and Fe), nutrients and organic matter. Until 2006, the last reported period, the wetland retained metals and stored them primarily in the bottom sediment and in the biomass of macrophytes secondarily. The aim of this work was to study metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Total concentrations and fractions (exchangeable, carbonate-bound, Fe-Mn oxides-bound, organic matter-bound and residual) of metals in sediment were analyzed in this treatment wetland, in order to estimate the fate of metals over time. Metal concentrations were significantly higher in the inlet than in the outlet sediment; concentrations in the latter remained without significant differences throughout the testing period. Metal concentrations and redox potential decreased with depth within the sediment. The lowest metal concentrations and pH and the highest redox values were attained in spring, in agreement with the period of maximum macrophyte growth. Ni and Zn were mainly stored associated with the carbonate fraction; Cr was mainly associated with the Fe-Mn oxides fraction, while Fe was mainly associated with the residual fraction, probably as pyrite. The incoming wastewater composition containing high pH, carbonate, calcium and Fe concentrations favored the observed association in the surface sediment. It would be expected that sediment will continue retaining metals in fractions that will not release them into the water while the chemical and environmental conditions remain unchanged.  相似文献   

15.
Metal mobility and the fractionation of elements and thus the biological uptake of Zn, Pb and Cd by plants were investigated using a simplified analytical procedure for soluble and bioavailable metals using a four-step sequential extraction procedure. Results showed that there was a low proportion of immediately soluble metals, as well as a high proportion of metals that could be released and would so be available for plant uptake. In the sequential extraction procedure, considering the total partition, there was a large proportion of Pb, Cd and Zn extracted in a readily mobile form. In acidic soils the content of metals in ready mobile form (exchangeable-bound to carbonates as well as to Fe and Mn oxides) and bound to organic matter constitutes an important source of potentially available elements. The same pattern was observed in alkaline soils, where almost 80% of the metals could be remobilized and be potentially available to plants. Knowing the metal partitioning and mobility of heavy metals it is very important for evaluating the phytoremediation efficiency.  相似文献   

16.
Abstract

Concentrations of surface soil Zn and Cd from agricultural areas of the Henan Province were measured. About 234 soil samples were collected. Total metal analyses, sequential chemical fractionation which were divided into seven fractions according to the method of the Geological Survey Technical Standard (DD2005-03) set by the China Geological Survey were carried out on the samples. Total Cd and Zn concentrations of the topsoil were 0.1909 (0.1–0.549) and 63.07 (33.3–344.3) mg kg?1 respectively. Compared with the values permitted in China’s control standards for soil (GB 15618–1995) and background value in Henan Province, the soil samples showed high levels of Cd. The soil organic carbon has a significantly positive correlation with Cd and Zn concentration in the soil. Significant positive correlation between pH and Cd, Zn concentration was observed. On average, the order of Cd in each fraction was exchangeable, (27.3%)>weakly bound to organic matter; (22.7%)>strongly bound to organic matter; (16.4%)>residual; (15.1%)>carbonate; (12.1%)>Fe/Mn oxide bound; (4.5%)>water soluble; (2.0%), Zn was residual; (66.3%)>Fe/Mn oxide bound; (10.9%)> weakly bound to organic matter; (9.4%)> exchangeable; (6.0%)> strongly bound to organic matter; (3.9%)> carbonate (2.9%)> water soluble (0.6%). The accuracy of the sequential extraction was judged by the relative error (RE). RE for Cd ranged from 0 to 45% with a mean of 16.3%. RE for Zn ranged from 0.1 to 11.4% with a mean of 3.4%. On average, bioavailability index (BI) for Cd and Zn was 39.1% and 9.0% respectively. The mobility of the elements in the order Cd> Zn corresponds with the plant-availability of individual elements. Comparisons between activities of Cd2+ and Zn2+ calculated by Sauve semi-mechanistic equations and that of the water soluble fractions were demonstrated. The activities of Cd2+ and Zn2+ calculated by the semi-empirical equation are lower than its water soluble fraction.  相似文献   

17.
Biogenic Mn oxides were produced by the bacterium Leptothrix discophora SS-1 (= ATCC 3182) in a chemically defined mineral salts medium, and the Pb binding and specific surface area of these oxides were characterized. Growth of SS-1 in the defined medium with pyruvate as a carbon and energy source required the addition of vitamin B12. Complete oxidation of Mn(II) within 60 h required the addition of ≥0.1 μM FeSO4. Pb adsorption isotherms were determined for the biogenic Mn oxides (and associated cells with their extracellular polymer) and compared to the Pb adsorption isotherms of cells and exopolymer alone, as well as to abiotic Mn oxides. The Pb adsorption to cells and exopolymer with biogenic Mn oxides (0.8 mmol of Mn per g) at pH 6.0 and 25°C was 2 orders of magnitude greater than the Pb adsorption to cells and exopolymer alone (on a dry weight basis). The Pb adsorption to the biogenic Mn oxide was two to five times greater than the Pb adsorption to a chemically precipitated abiotic Mn oxide and several orders of magnitude greater than the Pb adsorption to two commercially available crystalline MnO2 minerals. The N2 Brunauer-Emmet-Teller specific surface areas of the biogenic Mn oxide and fresh Mn oxide precipitate (224 and 58 m2/g, respectively) were significantly greater than those of the commercial Mn oxide minerals (0.048 and 4.7 m2/g). The Pb adsorption capacity of the biogenic Mn oxide also exceeded that of a chemically precipitated colloidal hydrous Fe oxide under similar solution conditions. These results show that amorphous biogenic Mn oxides similar to those produced by SS-1 may play a significant role in the control of trace metal phase distribution in aquatic systems.  相似文献   

18.
环境因子对杭州西湖沉积物各形态磷释放的影响   总被引:1,自引:0,他引:1  
对西湖沉积物的磷形态、粒径组成、化学组成进行了分析, 模拟研究了上覆水磷含量、光照、pH、温度、水动力条件等不同环境因子对西湖沉积物各形态磷释放的影响。结果表明, 上覆水为蒸馏水时的最大释磷量约为底泥-湖水系统的1.15倍, 且释放形态均以IP中的Fe/Al-P为主。在蔽光条件下的最大TP释放量约为光照条件下最大TP释放量的1.35倍。pH 是影响磷释放的重要因素, 在碱性条件下, 促进Fe/Al-P的释放; 在酸性条件下, 促进Ca-P 的释放。在高温条件下沉积物的释磷量会高于低温条件下的释磷量。沉积物各形态磷的释放量在15h后逐渐趋于平衡扰动状态达到平衡时TP释放量是静态释放平衡状态的1.61倍。研究结果旨在探讨不同环境因子对湖泊沉积物磷迁移转化的生态环境效应, 预测西湖内源磷释放的发展趋势, 为控制沉积物内源污染提供理论基础。  相似文献   

19.
Manganese (Mn) oxides participate in a range of interactions with organic carbon (OC) that can lead to either carbon degradation or preservation. Here, we examine the abundance and composition of OC associated with biogenic and environmental Mn oxides to elucidate the role of Mn oxides as a reservoir for carbon and their potential for selective partitioning of particular carbon species. Mn oxides precipitated in natural brackish waters and by Mn(II)‐oxidizing marine bacteria and terrestrial fungi harbor considerable levels of organic carbon (4.1–17.0 mol OC per kg mineral) compared to ferromanganese cave deposits which contain 1–2 orders of magnitude lower OC. Spectroscopic analyses indicate that the chemical composition of Mn oxide‐associated OC from microbial cultures is homogeneous with bacterial Mn oxides hosting primarily proteinaceous carbon and fungal Mn oxides containing both protein‐ and lipopolysaccharide‐like carbon. The bacterial Mn oxide‐hosted proteins are involved in both Mn(II) oxidation and metal binding by these bacterial species and could be involved in the mineral nucleation process as well. By comparison, the composition of OC associated with Mn oxides formed in natural settings (brackish waters and particularly in cave ferromanganese rock coatings) is more spatially and chemically heterogeneous. Cave Mn oxide‐associated organic material is enriched in aliphatic C, which together with the lower carbon concentrations, points to more extensive microbial or mineral processing of carbon in this system relative to the other systems examined in this study, and as would be expected in oligotrophic cave environments. This study highlights Mn oxides as a reservoir for carbon in varied environments. The presence and in some cases dominance of proteinaceous carbon within the biogenic and natural Mn oxides may contribute to preferential preservation of proteins in sediments and dominance of protein‐dependent metabolisms in the subsurface biosphere.  相似文献   

20.
Solubility and dissolution of iron oxides   总被引:6,自引:0,他引:6  
In most soils, FeIII oxides (group name) are the common source of Fe for plant nutrition. Since this Fe has to be supplied via solution, the solubility and the dissolution rate of the Fe oxides are essential for the Fe supply. Hydrolysis constants and solubility products (Ksp) describing the effect of pH on FeIII ion concentration in solution are available for the well-known Fe oxides occurring in soils such as goethite, hematite, ferrihydrite. Ksp values are usually extremely low ((Fe3+)·(OH)3=10–37–10–44). However, for each mineral type, Ksp may increase by several orders of magnitude with decreasing crystal size and it decreases with increasing Al substitution assuming ideal solid solution between the pure end-members. Based on such calculations a poorly crystalline goethite with a crystal size of 5 nm may well reach the solubility of ferrihydrite. The variations in Ksp are of relevance for soils because crystal size and Al substitution of soil Fe oxides vary considerably and can now be determined relatively easily.The concentration of Fe2+ in soil solutions is often much higher than that of Fe(III) ions. Therefore, redox potential strongly influences the activity of FeII. At a given pH and Eh, the activity of FeII is higher the higher Ksp of the FeIII oxide and thus also varies with the type of Fe oxide present.Besides the solubility, it is the dissolution rate which governs the supply of soluble Fe to the plant roots. Dissolution of Fe oxides takes place either by protonation, complexation or, most important, by reduction. Numerous dissolution rate studies with various FeIII oxides were conducted in strong mineral acids (protonation) and they have shown that besides the Fe oxide species, crystal size and/or crystal order and substitution are important determinative factors. For example, in soils, small amounts of a more highly soluble meta- or instable Fe oxide such as ferrihydrite with a large specific surface (several hundred m2g–1) may be essential for the Fe supply to the plant root. Its higher dissolution rate can also be used to quantify its amount in soils. Ferrihydrite can be an important component in soils with high amounts of organic matter and/or active redox dynamics, whereas highly aerated and strongly weathered soils are usually very low in ferrihydrite. On the other hand, dissolution rates of goethites decrease as their Al substitution increases.Much less information exists on the rate of reductive and chelative dissolution of Fe oxides which generally simulate soil conditions better than dissolution by protonation. Here again, type of oxide, crystal size and substitution are important factors. Organic anions such as oxalate, which are adsorbed at the surface, may weaken the Fe3+-O bonds and thereby increase reductive dissolution. As often observed in weathering, the dissolution features of the crystals appear to follow zones of weakness in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号