首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.  相似文献   

2.
A computationally developed model of human upright balance control (Jo and Massaquoi on Biol cybern 91:188–202, 2004) has been enhanced to describe biped walking in the sagittal plane. The model incorporates (a) non-linear muscle mechanics having activation level -dependent impedance, (b) scheduled cerebrocerebellar interaction for control of center of mass position and trunk pitch angle, (c) rectangular pulse-like feedforward commands from a brainstem/ spinal pattern generator, and (d) segmental reflex modulation of muscular synergies to refine inter-joint coordination. The model can stand when muscles around the ankle are coactivated. When trigger signals activate, the model transitions from standing still to walking at 1.5 m/s. Simulated natural walking displays none of seven pathological gait features. The model can simulate different walking speeds by tuning the amplitude and frequency in spinal pattern generator. The walking is stable against forward and backward pushes of up to 70 and 75 N, respectively, and with sudden changes in trunk mass of up to 18%. The sensitivity of the model to changes in neural parameters and the predicted behavioral results of simulated neural system lesions are examined. The deficit gait simulations may be useful to support the functional and anatomical correspondences of the model. The model demonstrates that basic human-like walking can be achieved by a hierarchical structure of stabilized-long loop feedback and synergy-mediated feedforward controls. In particular, internal models of body dynamics are not required.  相似文献   

3.
A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

4.

A mathematical model is developed to study the human thorax and pelvis movements in the frontal plane during normal walking. The model comprises of two-link base-excited inverted pendulums with one-degree of rotational freedom for each link. Since the linear motion of the pelvis has a significant effect on the upper body stability, this effect is included in the model by having a base point moving in the frontal plane in a general way. Furthermore, because the postural stability is the primary requirement of normal human walking, the control law is developed based on Lyapunov's stability theory, which guarantees the stability of the pendulum system around the up-right position. To evaluate the model, the simulation results, including the angular displacement of each link and the torque applied on each link, are compared with those from gait measurements. It is shown that the simulation results match those from gait measurements closely. These results suggest that the proposed model can provide a useful framework for analysis of postural control mechanisms.  相似文献   

5.
The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.  相似文献   

6.
Several models have been employed to study human postural control during upright quiet stance. Most have adopted an inverted pendulum approximation to the standing human and theoretical models to account for the neural feedback necessary to keep balance. The present study adds to the previous efforts in focusing more closely on modelling the physiological mechanisms of important elements associated with the control of human posture. This paper studies neuromuscular mechanisms behind upright stance control by means of a biologically based large-scale neuromusculoskeletal (NMS) model. It encompasses: i) conductance-based spinal neuron models (motor neurons and interneurons); ii) muscle proprioceptor models (spindle and Golgi tendon organ) providing sensory afferent feedback; iii) Hill-type muscle models of the leg plantar and dorsiflexors; and iv) an inverted pendulum model for the body biomechanics during upright stance. The motor neuron pools are driven by stochastic spike trains. Simulation results showed that the neuromechanical outputs generated by the NMS model resemble experimental data from subjects standing on a stable surface. Interesting findings were that: i) an intermittent pattern of muscle activation emerged from this posture control model for two of the leg muscles (Medial and Lateral Gastrocnemius); and ii) the Soleus muscle was mostly activated in a continuous manner. These results suggest that the spinal cord anatomy and neurophysiology (e.g., motor unit types, synaptic connectivities, ordered recruitment), along with the modulation of afferent activity, may account for the mixture of intermittent and continuous control that has been a subject of debate in recent studies on postural control. Another finding was the occurrence of the so-called “paradoxical” behaviour of muscle fibre lengths as a function of postural sway. The simulations confirmed previous conjectures that reciprocal inhibition is possibly contributing to this effect, but on the other hand showed that this effect may arise without any anticipatory neural control mechanism.  相似文献   

7.
The central pattern generators (CPGs) in the spinal cord strongly contribute to locomotor behavior. To achieve adaptive locomotion, locomotor rhythm generated by the CPGs is suggested to be functionally modulated by phase resetting based on sensory afferent or perturbations. Although phase resetting has been investigated during fictive locomotion in cats, its functional roles in actual locomotion have not been clarified. Recently, simulation studies have been conducted to examine the roles of phase resetting during human bipedal walking, assuming that locomotion is generated based on prescribed kinematics and feedback control. However, such kinematically based modeling cannot be used to fully elucidate the mechanisms of adaptation. In this article we proposed a more physiologically based mathematical model of the neural system for locomotion and investigated the functional roles of phase resetting. We constructed a locomotor CPG model based on a two-layered hierarchical network model of the rhythm generator (RG) and pattern formation (PF) networks. The RG model produces rhythm information using phase oscillators and regulates it by phase resetting based on foot-contact information. The PF model creates feedforward command signals based on rhythm information, which consists of the combination of five rectangular pulses based on previous analyses of muscle synergy. Simulation results showed that our model establishes adaptive walking against perturbing forces and variations in the environment, with phase resetting playing important roles in increasing the robustness of responses, suggesting that this mechanism of regulation may contribute to the generation of adaptive human bipedal locomotion.  相似文献   

8.
The neuromuscular system used to stabilize upright posture in humans is a nonlinear dynamical system with time delays. The analysis of this system is important for improving balance and for early diagnosis of neuromuscular disease. In this work, we study the dynamic coupling between the neuromuscular system and a balance board—an unstable platform often used to improve balance in young athletes, and older or neurologically impaired patients. Using a simple inverted pendulum model of human posture on a balance board, we describe a surprisingly broad range of divergent and oscillatory CoP/CoM responses associated with instabilities of the upright equilibrium. The analysis predicts that a variety of sudden changes in the stability of upright postural equilibrium occurs with slow continuous deterioration in balance board stiffness, neuromuscular gain, and time delay associated with the changes in proprioceptive/vestibular/visual-neuromuscular feedback. The analysis also provides deeper insight into changes in the control of posture that enable stable upright posture on otherwise unstable platforms.  相似文献   

9.
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation.  相似文献   

10.
Lower limb amputation substantially disrupts motor and proprioceptive function. People with lower limb amputation experience considerable impairments in walking ability, including increased fall risk. Understanding the biomechanical aspects of the gait of these patients is crucial in improving their gait function and their quality of life. In the present study, 9 persons with unilateral transtibial amputation and 13 able-bodied controls walked on a large treadmill in a Computer Assisted Rehabilitation Environment (CAREN). While walking, subjects were either not perturbed, or were perturbed either by continuous mediolateral platform movements or by continuous mediolateral movements of the visual scene. Means and standard deviations of both step lengths and step widths increased significantly during both perturbation conditions (all p<0.001) for both groups. Measures of variability, local and orbital dynamic stability of trunk movements likewise exhibited large and highly significant increases during both perturbation conditions (all p<0.001) for both groups. Patients with amputation exhibited greater step width variability (p=0.01) and greater trunk movement variability (p=0.04) during platform perturbations, but did not exhibit greater local or orbital instability than healthy controls for either perturbation conditions. Our findings suggest that, in the absence of other co-morbidities, patients with unilateral transtibial amputation appear to retain sufficient sensory and motor function to maintain overall upper body stability during walking, even when substantially challenged. Additionally, these patients did not appear to rely more heavily on visual feedback to maintain trunk stability during these walking tasks.  相似文献   

11.
In this paper multilayer neural networks (MNNs) are used to control the balancing of a class of inverted pendulums. Unlike normal inverted pendulums, the pendulum discussed here has two degrees of rotational freedom and the base-point moves randomly in three-dimensional space. The goal is to apply control torques to keep the pendulum in a prescribed position in spite of the random movement at the base-point. Since the inclusion of the base-point motion leads to a non-autonomous dynamic system with time-varying parametric excitation, the design of the control system is a challenging task. A feedback control algorithm is proposed that utilizes a set of neural networks to compensate for the effect of the system's nonlinearities. The weight parameters of neural networks updated on-line, according to a learning algorithm that guarantees the Lyapunov stability of the control system. Furthermore, since the base-point movement is considered unmeasurable, a neural inverse model is employed to estimate it from only measured state variables. The estimate is then utilized within the main control algorithm to produce compensating control signals. The examination of the proposed control system, through simulations, demonstrates the promise of the methodology and exhibits positive aspects, which cannot be achieved by the previously developed techniques on the same problem. These aspects include fast, yet well-maintained damped responses with reasonable control torques and no requirement for knowledge of the model or the model parameters. The work presented here can benefit practical problems such as the study of stable locomotion of human upper body and bipedal robots.  相似文献   

12.
The capacity to maintain upright balance by minimising upper body oscillations during walking, also referred to as gait stability, has been associated with a decreased risk of fall. Although it is well known that fall is a common complication after stroke, no study considered the role of both trunk and head when assessing gait stability in this population. The primary aim of this study was to propose a multi-sensor protocol to quantify gait stability in patients with subacute stroke using gait quality indices derived from pelvis, sternum, and head accelerations. Second, the association of these indices with the level of walking ability, with traditional clinical scale scores, and with fall events occurring within the six months after patients’ dismissal was investigated. The accelerations corresponding to the three abovementioned body levels were measured using inertial sensors during a 10-Meter Walk Test performed by 45 inpatients and 25 control healthy subjects. A set of indices related to gait stability were estimated and clinical performance scales were administered to each patient. The amplitude of the accelerations, the way it is attenuated/amplified from lower to upper body levels, and the gait symmetry provide valuable information about subject-specific motor strategies, discriminate between different levels of walking ability, and correlate with clinical scales. In conclusion, the proposed multi-sensor protocol could represent a useful tool to quantify gait stability, support clinicians in the identification of patients potentially exposed to a high risk of falling, and assess the effectiveness of rehabilitation protocols in the clinical routine.  相似文献   

13.
A dynamic model is developed to describe the swing phase of the hindlimb of a normally walking horse. The limb was represented by four rigid segments constrained to move in a sagittal plane only. The mathematical equations of motion of this four-element pendulum were formulated using Lagrange's theorem. The morphometric parameters from the hindlimb segments of 3 horses were determined using high-speed film analysis. Five muscle groups were incorporated in the model. Muscle activity was derived from earlier EMG measurements. Optimization of muscle moments resulted in a simulated swing movement that approximated that in the living animal.  相似文献   

14.
To test the -model version of the equilibrium point hypothesis both for feasibility and validity with respect to the control of terrestrial locomotion, we developed a two-dimensional, eleven-segment musculoskeletal model of the human body including 14 muscle-tendon complexes per leg, three-segment feet, and a physiologically based model of foot-ground interaction. Human walking was synthesized by numerical integration of the coupled muscle-tendon and rigid body dynamics. To this end a control algorithm based on the -model was implemented in the model providing muscle stimulation patterns that guaranteed dynamically stable walking including a balanced trunk. Thus, the timing of the movement is not preset by a central pattern generator but emerges from the interaction of the musculoskeletal system with the control algorithm. The control parameters were found in a trial-and-error approach. The feedforward part of the control scheme consists of just two target configurations each of which is composed of a set of one nominal length per muscle (-model). Variation of gravity reveals that (1) the synthesized walking patterns are close to ballistic walking and (2) this muscularly induced natural walking can only be initiated and maintained in the range between about a tenth and three times earth-bound gravity. Our walking patterns are robust both against parameter variations and shuffling of the swing leg. We discuss our model with respect to gravity scaling, speed control, feedback delay, and the terms equilibrium point hypothesis and central pattern generator.  相似文献   

15.
The main goal was to evaluate the relative roles of the ankle and hip muscles in human postural control in the frontal plane during normal upright standing. Experiments were designed to compare upright standing with and without the involvement of the ankle joint. The results demonstrated that standing balance in the frontal plane depended largely on the hip muscles and just slightly on the ankle muscles, which performed only small adjusting movements in the frontal plane. During quiet standing, the human body swayed in the frontal plane as a two-component inverted pendulum or, when no ankle joint torque was permitted, as an inverted pendulum consisting of only one component.  相似文献   

16.
We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos.  相似文献   

17.
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.  相似文献   

18.
To circumvent the existing shortcoming of optimisation algorithms in trunk biomechanical models, both agonist and antagonist trunk muscle stresses to different powers are introduced in a novel objective function to evaluate the role of abdominal muscles in trunk stability and spine compression. This coupled objective function is introduced in our kinematics-driven finite element model to estimate muscle forces and to identify the role of abdominal muscles in upright standing while lifting symmetrically a weight at different heights. Predictive equations for the compression and buckling forces are developed. Results are also compared with the conventional objective function that neglects abdominal muscle forces. An overall optimal solution involving smaller spinal compression but higher trunk stability is automatically attained when choosing muscle stress powers at and around 3. Results highlight the internal oblique muscle as the most efficient abdominal muscle during the tasks investigated. The estimated relative forces in abdominal muscles are found to be in good agreement with the respective ratios of recorded electromyography activities.  相似文献   

19.
A principle objective of human walking is controlling angular motion of the body as a whole to remain upright. The force of the ground on each foot (F) reflects that control, and recent studies show that in the sagittal plane F exhibits a specific coordination between F direction and center-of-pressure (CP) that is conducive to remaining upright. Typical walking involves the CP shifting relative to the body due to two factors: posterior motion of the foot with respect to the hip (stepping) and motion of the CP relative to the foot (foot roll-over). Recent research has also shown how adjusting ankle torque alone to shift CP relative to the foot systematically alters the direction of F, and thus, could play a key role in upright posture and the F measured during walking. This study explores how the CP shifts due to stepping and foot roll-over contribute to the observed F and its role in maintaining upright posture. Experimental walking kinetics and kinematics were combined with a mechanical model of the human to show that variation in F that was not attributable to foot roll-over had systematic correlation between direction and CP that could be described by an intersection point located near the center-of-mass. The findings characterize a component of walking motor control, describe how typical foot roll-over contributes to postural control, and provide a rationale for the increased fall risk observed in individuals with atypical ankle muscle function.  相似文献   

20.
Sit-to-walk (STW) is a common functional and transitional task which challenges an individual's postural control systems. As aging is associated with an increased risk of falls during transitional movements, we biomechanically investigated the STW movement task in 12 healthy young and 12 healthy elderly individuals. Performance was evaluated utilizing motion analysis and two force plates. The principal finding of this study was the impaired performance of the healthy older adults. The older adults generated significantly less momentum prior to rising (p=0.011) and further delayed (p<0.001) the initiation of gait until standing more upright (p=0.036). The young adults successfully merged the component tasks shortly after seat-off and displayed significantly greater step length (p<0.001), step velocity (p<0.001), and tolerated greater separation of the center of pressure and center of mass at the end single support phase of the initial step (p=0.001). While the young adults fluidly merged the standing and walking task components, the older adults displayed a conservative movement performance during the STW task thereby limiting threats to their postural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号