共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbially induced calcite precipitation (MICP) can reduce the permeability of soil by reducing the pore volumes. A MICP-based soil improvement method to control water leakage in irrigation channels and reservoirs built on sandy soil grounds is presented in this article. Using this method, a low-permeable hard crust can be formed at the soil surfaces. An experimental study was carried out to evaluate the effect of this method. Sandy soil samples were treated using four different schemes, namely, (1) surface spray, (2) surface spray with the addition of fibers, (3) surface spray and bulk stabilization, and (4) immersion stabilization. By applying around 2.6?L treatment liquid (consisting of ureolytic bacteria, 0.5?mol/L calcium chloride and 0.5?mol/L urea) to the top 2-cm thick soil, the seepage rates of the samples treated by the four different schemes could be reduced by up to 379 times. The conversion rates of calcium source in the tests were up to 89.7%. The results showed that a method of treating the soil in bulk before the formation of a crust on top of the soil layer was effective in reducing the seepage rates. After the bio-treatment, the formed low-permeable hard crust layer was 10 to 20?mm thick with a calcite content higher than 5%. Below the hard crusts, the calcite content was less than 5% and the soil was not properly cemented. Using the mercury intrusion test, it was found that both pore volumes and pore sizes of the bio-treated soil reduced significantly as compared with the untreated soil. Penetration tests using a flat-bottom penetrometer were used to assess the mechanical behavior of the bio-treated soil. The results indicated that the penetration resistance of the bio-treated soil layer was much higher than that of the untreated soil. 相似文献
2.
The use of biological means for ground improvement have become popular, which generally works through the process called microbially-induced calcium carbonate precipitation (MICP). Many studies indicate successful application of MICP based improvement with multiple bacteria and on several soils. Given the proven performance of MICP, this study aims to examine the MICP process by comparing the calcium carbonate precipitation ability of widely studied bacteria, i.e., Sporosarcina pasteurii and relatively under-recognized bacteria, i.e., Bacillus licheniformis to outline the formation success. For this purpose, two different sands were tested for observing precipitation behavior using a series of syringe tests. Furthermore, the effect of concentration and inclusion of calcium chloride for nutrition of bacteria, saturation with water, and hybrid use of two bacteria were investigated in some tests for diversification. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used for the interpretation of results. Results indicated that Sporosarcina pasteurii had performed superior over Bacillus licheniformis when achieving calcium carbonate precipitation in tests for both sands. In addition, many intriguing SEM images contributed to the literature of MICP monitoring, highlighting the effects of the variables investigated. 相似文献
3.
Biocementation is a recently developed new branch in geotechnical engineering that deals with the application of microbiological activity to improve the engineering properties of soils. One of the most commonly adopted processes to achieve soil biocementation is through microbially induced calcite precipitation (MICP). This technique utilizes the metabolic pathways of bacteria to form calcite (CaCO3) that binds the soil particles together, leading to increased soil strength and stiffness. This paper presents a review of the use of MICP for soil improvement and discusses the treatment process including the primary components involved and major affecting factors. Envisioned applications, potential advantages and limitations of MICP for soil improvement are also presented and discussed. Finally, the primary challenges that lay ahead for the future research (i.e. treatment optimization, upscaling for in situ implementation and self-healing of biotreated soils) are briefly discussed. 相似文献
4.
Niklas Erdmann Felix Kstner Kristin de Payrebrune Dorina Strieth 《Engineering in Life Science》2022,22(12):760
When using microbiologically induced calcium carbonate precipitation (MICP) to produce calcium carbonate crystals in the cavities between mineral particles to consolidate them, the inhomogeneous distribution of the precipitated calcium carbonate poses a problem for the production of construction materials with consistent parameters. Various approaches have been investigated in the literature to increase the homogeneity of consolidated samples. One approach can be the targeted application of ureolytic organisms by 3D printing. However, to date, this possibility has been little explored in the literature. In this study, the potential to use MICP to print calcium carbonate layers on mineral particles will be investigated. For this purpose, a dispensing unit was modified to apply both a suspension of Sporosarcina pasteurii and a calcination solution containing urea and calcium chloride onto quartz sand. The study showed that after passing through the nozzle, S. pasteurii preserved consistent cell vitality and therefore its potential of MICP. Applying cell suspension and calcination solution through a printing nozzle resulted in a layer of calcium carbonate crystals on quartz sand. This observation demonstrated the proof of concept of printing calcium carbonate by MICP through the nozzle of a dispensing unit. Furthermore, it was shown that cell suspensions of S. pasteurii can be stored at 4°C for a period of 17 days while maintaining its optical density, urease activity and cell vitality and therefore the potential for MICP. This initial concept could be extended in further research to printing three‐dimensional (3D) objects to solve the problem of homogeneity in consolidated mineral particles. 相似文献
5.
Deepak Sarda Huzaifa S. Choonia D. D. Sarode S. S. Lele 《Journal of industrial microbiology & biotechnology》2009,36(8):1111-1115
Biocalcification, also known as microbiologically induced calcite precipitation (MICP), is a phenomenon involving the activity
of the enzyme urease. A large number of soil microorganisms exhibit urease-producing ability. A novel application of MICP
to improve properties of bricks by a soil bacteria Bacillus pasteurii NCIM 2477 was studied. Most of the deterioration of brick structures takes place because of the presence of moisture. Deposition
of calcite on the surface and in voids of bricks reduces the water absorption substantially. A favorable effect of microbes
to improve the durability of bricks by reducing water absorption was demonstrated as a novel concept in this paper. 相似文献
6.
7.
AbstractUrease is involved in the formation of carbonate sediments by microbial-induced calcium carbonate precipitation (MICP), and Sporosarcina pasteurii used extensively in this technique owing to its high urease production. In this study, a simple two-step culture method with the appropriate medium was developed to enhance the urease activity of S. pasteurii. Urea played an important role in the culture process, particularly during the pre-cultivation step and the newly developed method improved both urease activity and specific urease activity. Furthermore, the increase in urease activity by MICP resulted in increased production of calcium carbonate and better strength of bio-cemented sand. 相似文献
8.
Resting cells of Bacillus pasteurii as employed in the treatment of distillery waste showed deamination of amino acids. The deamination of l-glutamic acid and dl-aspartic acid was found to be oxidative while that of dl-serine, dl-threonine and l-asparagine was non-oxidative. dl-Alanine and glycine were not deaminated when present individually but when incubated together showed oxidative deamination. NAD stimulated the oxidation of l-glutamic acid and α,α′-dipyridyl completely inhibited it. 相似文献
9.
Muhammad Arif Lodhi Javid Hussain Muhammad Athar Abbasi Amir Reza Jassbi Muhammad Iqbal Choudhary Viqar Uddin Ahmad 《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):531-535
Inhibition of Bacillus pasteurii urease enzyme by 3,7,15-tri-O-acetyl-5-O-nicotinoyl-13,14-dihydroxymyrsinol (1), a diterpene ester with a myrsinol-type skeleton, isolated from Euphorbia decipiens Boiss. & Buhse, was un-competitive consistent with the molecular docking results. The Ki value was 117.40 ± 0.7 μM. 相似文献
10.
Farzin Kalantary Dariush Abbasi Govanjik Mahdi Safdari Seh Gonbad 《Geomicrobiology journal》2019,36(6):533-542
Prolonged droughts and excessive water harvesting in western Asia has accelerated desertification and caused longer dry seasons of salt lakes. The Aral Sea experience has proven that dust from saline soil is a serious health issue. Various stabilization techniques to reduce wind erosion have been used in the past. However, in recent years, a potentially viable method has been developed; microbial induced calcite precipitation (MICP) has been introduced as a method of soil stabilization, though its effectiveness in saline soils remains to be examined. The effect of salt content in loose sandy soil on calcite precipitation of calcite through stimulation of native bacteria is investigated in this article. Samples with salinity up to 30% salt content were prepared and treated with different culture medium compounds. A number of tests were used to evaluate the effect of the mentioned parameters. The results show that improvement increases with increasing salinity up to 5% salt, and further increase in salinity reduces the effectiveness of improvement. It is also shown that the addition of urea in the culture medium has a significant effect on the urea hydrolysis which resulted in a five-fold increase in compressive strength. Four native strains of halotolerant urease-positive bacteria were also identified. 相似文献
11.
Calcite precipitation in model solutions and natural waters depends on the magnitude of saturation (saturation index ≫ 1). Continuous lye addition should simulate the CO2 decrease through assimilation by algae and the experiments can be applied to the autochthonic calcite precipitation in lakes. It seems possible to restore lakes with artificial calcite precipitation. Basic data for this experiment are given in this paper. 相似文献
12.
The kinetics, specificity and mechanism of leucine uptake were studied in the alkaliphilic bacterium Bacillus pasteurii DSM 33 (ATCC 11859). Leucine was accumulated up to 200-fold by a sodium-dependent secondary transport system for branched-chain
amino acids. Apparent Kt values of 9.6 μM for leucine, 8.9 μM for isoleucine, 9.3 μM for valine, and 0.71 mM for sodium were determined, and maximum
uptake activity was observed at an external pH of 8.5 and at 35°C. The effect of several ionophores indicated that transport
was energized by the membrane potential and a sodium gradient; each gradient alone was sufficient to drive the uptake of leucine.
The activity of the leucine transport system was regulated by the intracellular pH and was inhibited at an internal pH below
7.0.
Received: 26 September 1995 / Accepted: 10 December 1995 相似文献
13.
Emma Narotzky Maria E. Jerome John R. Horner Dana J. Rashid 《The journal of histochemistry and cytochemistry》2020,68(9):607
Here, we describe an ethylenediaminetetraacetic acid (EDTA)-based bone demineralization procedure that uses cation-exchange resin and dialysis tubing. This method does not require solution changes or special equipment, is faster than EDTA alone, is cost-effective, and is environmentally friendly. Like other EDTA-based methods, this procedure yields superior tissue preservation than formic acid demineralization. Greater protein antigenicity using EDTA as opposed to formic acid has been described, but we also find significant improvements in carbohydrate-based histological staining. Histological staining using this method reveals cartilage layers that are not distinguishable with formic acid demineralization. Carbohydrate preservation is relevant to many applications of bone demineralization, including the assessment of osteoarthritis from bone biopsies and the use of demineralized bone powder for tissue culture and surgical implants. The improvements in time, expense, and tissue quality indicate this method is a practical and often superior alternative to formic acid demineralization: 相似文献
14.
S. Benini Marco Borsari S. Ciurli Alexander Dikiy M. Lamborghini 《Journal of biological inorganic chemistry》1998,3(4):371-382
Direct cyclic voltammetry and 1H NMR spectroscopy have been combined to investigate the electrochemical and spectroscopic properties of cytochrome c
553 isolated from the alkaliphilic soil bacterium Bacillus pasteurii. A quasi-reversible diffusion-controlled redox process is exhibited by cytochrome c
553 at a pyrolitic graphite edge microelectrode. The temperature dependence of the reduction potential, measured using a non-isothermal
electrochemical cell, revealed a discontinuity at 308 K. The thermodynamic parameters determined in the low-temperature range
(275–308 K;ΔS°′=–162.7±1.2 J mol–1 K–1, ΔH°′=–53.0±0.5 kJ mol–1, ΔG°′=–4.5±0.1 kJ mol–1, E°′=+47.0±0.6 mV) indicate the presence of large enthalpic and entropic effects, leading, respectively, to stabilization and
destabilization of the reduced form of cytochrome c
553. Both effects are more accentuated in the high-temperature range (308–323 K;ΔS°′=–294.1±8.4 J mol–1 K–1, ΔH°′=–93.4±3.1 kJ mol–1, ΔG°′=–5.8±0.6 kJ mol–1, E°′=+60.3±5.8 mV), with the net result being a slight increase of the standard reduction potential. These thermodynamic parameters
are interpreted using the compensation theory of hydration of biopolymers as indicating the extrusion, upon reduction, of
water molecules from the hydration sphere of the cytochrome. The low-T and high-T conformers differ by the number of water molecules in the solvation sphere: in the high-T conformer, the number of water molecules extruded upon reduction increases, as compared to the low-T conformer. The ionic strength dependence of the reduction potential at 298 K, treated within the frame of extended Debye-Hückel
theory, yields values of E
°′
(I=0)
=–25.4±1.4 mV, z
red=–11.3, and z
ox=–10.3. The pH dependence of the reduction potential at 298 K shows a plateau in the pH range 7–10 and an increase at more
acidic pH, allowing the calculation of pK
O=5.5 and pK
R=5.7, together with the estimate of the reduction potentials of completely protonated (+71 mV) and deprotonated (+58 mV) forms
of cytochrome c
553. 1H NMR spectra of the oxidized paramagnetic cytochrome c
553 indicate the presence of a His-Met axial coordination of the low-spin (S=1/2) heme iron, which is maintained in the temperature interval 288–340 K at pH 7 and in the pH range 4.8–10.0 at 298 K.
The temperature dependence of the hyperfine-shifted signals shows both Curie-type and anti-Curie-type behavior, with marked
deviations from linearity, interpreted as indicating the presence of a fast equilibrium between the low-T and high-T conformers, having slightly different heme electronic structures resulting from the T-induced conformational change. Increasing the NaCl concentration in the range 0–0.2 M causes a slight change of the 1H NMR chemical shifts of the hyperfine-shifted signals, with no influence on their linewidth. The calculated lower limit value
of the apparent affinity constant for specific ion binding is estimated as 5.2±1.1 M–1. The pH dependence of the isotropically shifted 1H NMR signals of the oxidized cytochrome displays at least one ionization step with pK
O=5.7. The thermodynamic and spectroscopic data indicate a large solvent-derived entropic effect as the main cause for the
observed low reduction potential of B. pasteurii cytochrome c
553.
Received: 9 January 1998 / Accepted: 8 April 1998 相似文献
15.
Béatrice Mathiot Angelo Perani Dominique Dumas Michel Maugras Jacques Didelon Jean-François Stoltz 《Cytotechnology》1993,11(1):41-48
Hybridoma cell growth and monoclonal antibody production were investigated with a laboratory-made system in which cells were grown in dialysis tubing (MW cut-off 25 kD). The dialysis system contained 10 ml of cell suspension and was immersed in 200 ml of culture medium which when replaced or was at 4-day intervals. With this system, monoclonal antibody concentrations similar to those observed in ascites (concentrations in the order of one gramme per liter) were obtained. With no medium replacement, the antibody production was 3.3 g/l and the cell productivity 3.2×10–8 g of IgM produced per cell in one minute. With medium replacement the antibody production was higher, 4.4 g/l but the cell productivity was lower, 1.49×10–8 g per cell in one minute. Cells cultivated in non-optimized conditions were better producers than cells growing in a good environment.Abbreviations FCS
fetal calf serum
- Ig
immunoglobulin
- MAb
monoclonal antibody
- MW
molecular weight
- MWCO
molecular weight cut off
- RM
replaced medium
- NRM
non replaced medium 相似文献
16.
A. M. Hartley W. A. House M. E. Callow B. S. C. Leadbeater 《International Review of Hydrobiology》1995,80(3):385-401
The precipitation of calcite from a calcium bicarbonate solution, similar in ionic strength to natural hardwaters, was observed in a series of experiments utilizing an automated culture apparatus. Seeded growth experiments, using calcite seed crystals, were performed at a range of phosphate concentrations to observe inhibitory effects. These experiments demonstrated a linear relationship of increasing inhibition with increasing initial phosphate concentration. A further series of experiments was performed in which an actively photosynthesizing culture of a unicellular green alga (Chlorococcum sp.) was added to the culture vessel in order to initiate precipitation. Experiments to observe spontaneous precipitation, occurring in the absence of both seed and alga additions, were carried out to compare with precipitation rates in the algal experiments. A control experiment was also performed to investigate whether precipitation occurrred in algal cultures maintained in darkness. The carbonate site mechanistic model, developed for calcite precipitation in abiotic conditions, was used to analyse the results of the algal experiments and found to be applicable. 相似文献
17.
Some microorganisms such as Sporoscarcina pasteurii precipitate calcium carbonate and are suitable for biocementation. This study aimed to investigate the effects of several factors including concentration of bacteria, chemical reactants, temperature, and pH on precipitation of calcium carbonate. The results showed that after 7 and 14 days of curing, the compressive strength of silty clay soil samples increased steadily as pH increased from 5 to 9. It was observed that pH plays an important role in biocementation. The highest compressive strength (i.e. 92 kPa) was observed when the soil was treated with 50 ml of bacterial solution after 14 days of curing. In addition, it was observed that the highest compressive strength of samples was achieved when the temperature was 40°C. 相似文献
18.
Kouta Hatayama 《Geomicrobiology journal》2020,37(7):603-609
AbstractSeveral dissimilatory metal-reducing bacteria and a halophilic bacterium are able to induce manganese carbonate (rhodochrosite) precipitation. In this study, it was revealed that Ensifer adhaerens JCM 21105T, Microbacterium testaceum JCM 1353T, Pseudomonas protegens DSM 19095T, and Rheinheimera texasensis DSM 17496T, which are calcite-forming bacteria, were able to aerobically induce the precipitation of manganese carbonate crystals on an agar medium. In the case of all four strains, the principal morphology of the precipitated manganese carbonate crystals was that of micro-sized spheres, when they were aerobically cultivated over the entire surface of the agar medium at 28?°C for 7?days. 相似文献
19.
在膜翅目中 ,未受精卵形成单倍体的雄蜂 ,而在大多数情况下受精卵将产生双倍体的雌蜂。但是 ,因互补性别决定机制 (CSD)的作用 ,受精卵有时也会产生双倍体雄蜂。这种性别决定机制包括单位点的CSD和多位点的CSD。在单位点的CSD作用下 ,唯一的一个性位点上的多个等位基因决定后代个体的性别。性位点上杂合的个体将是雌性 ,半合或同型结合的个体将分别形成单倍体或双倍体的雄性。在多位点的CSD作用下 ,两个或两个以上的性位点控制后代的性别 ,每个性位点上包含两个或两个以上的等位基因。如果一个或一个以上的性位点是杂合的 ,形成的双倍体后代都是雌性的 ,但若是所有的性位点都为同型合子 ,则将产生双倍体的雄蜂。在膜翅目中 ,目前已知 4 3种具有双倍体雄蜂 ,其中 2 2种发现存在单位点的CSD ,但是多位点的CSD还有待于确认。双倍体的雄性个体或者不能存活 ,或者不育 ,这样的个体形成将对寄生蜂种群的增长带来一定的遗传负担。在生物防治上 ,保护寄生蜂种群的性等位基因的多样性及减少其遗传多异性的损失极其重要。如果利用具有单位点CSD的种类 ,采取一定的措施将可避免由于双倍体雄性的形成所带来的负面影响。 相似文献
20.
Subsurface geotechnical data from a cemented tailings sand site in eastern India indicated that the cementation was at least partially biogenic. Three strains of aerobic soil-residing bacteria from this site exhibited capabilities of producing extracellular polymeric substance, calcite and struvite when grown in minimal mineral salt media. These strains grew easily under a variety of physical, chemical and nutritional conditions. Drained triaxial testing of loose sand samples indicated that they became stronger upon hosting these strains. No details on EPS and calcite production of these isolates and the effects of these products on soil behavior were found in the literature. 相似文献