首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient and stable organic photovoltaic (OPV) cells are demonstrated by incorporating solution‐processed hydrogen molybdenum bronzes as anode interlayers. The bronzes are synthesized using a sol‐gel method with the critical step being the partial oxide reduction/hydrogenation using an alcohol‐based solvent. Their composition, stoichiometry, and electronic properties strongly correlate with the annealing process to which the films are subjected after spin coating. Hydrogen molybdenum bronzes with moderate degree of reduction are found to be highly advantageous when used as anode interlayers in OPVs, as they maintain a high work function similar to the fully stoichiometric metal oxide, whereas they exhibit a high density of occupied gap states, which are beneficial for charge transport. Enhanced short‐circuit current, open‐circuit voltage and, fill factor, relative to reference devices incorporating either PEDOT‐PSS or a solution processed stoichiometric molybdenum oxide, are obtained for a variety of bulk heterojunction mixtures based on different polymeric donors and fullerene acceptors. In particular, high power conversion efficiencies are obtained in devices that employed the s‐HxMoO2.75 as the hole extraction layer.  相似文献   

2.
Electron spin resonance (ESR), 1H‐NMR, voltage and resistance experiments were performed to explore structural and dynamic changes of Egg Yolk Lecithin (EYL) bilayer upon addition of model peptides. Two of them are phenylalanine (Phe) derivatives, Ac‐Phe‐NHMe ( 1 ) and Ac‐Phe‐NMe2 ( 2 ), and the third one, Ac‐(Z)‐ΔPhe‐NMe2 ( 3 ), is a derivative of (Z)‐α,β‐dehydrophenylalanine. The ESR results revealed that all compounds reduced the fluidity of liposome's membrane, and the highest activity was observed for compound 2 with N‐methylated C‐terminal amide bond (Ac‐Phe‐NMe2). This compound, being the most hydrophobic, penetrates easily through biological membranes. This was also observed in voltage and resistance studies. 1H‐NMR studies provided a sound evidence on H‐bond interactions between the studied diamides and lecithin polar head. The most significant changes in H‐atom chemical shifts and spin‐lattice relaxation times T1 were observed for compound 1 . Our experimental studies were supported by theoretical calculations. Complexes EYL? Ac‐Phe‐NMe2 and EYL? Ac‐(Z)‐ΔPhe‐NMe2, stabilized by NH???O or/and CH???O H‐bonds were created and optimized at M06‐2X/6‐31G(d) level of theory in vacuo and in H2O environment. According to our molecular‐modeling studies, the most probable lecithin site of H‐bond interaction with studied diamides is the negatively charged O‐atom in phosphate group which acts as H‐atom acceptor. Moreover, the highest binding energy to hydrocarbon chains were observed in the case of Ac‐Phe‐NMe2 ( 2 ).  相似文献   

3.
  • In polluted areas, plants may be exposed to supra‐optimal levels of the micronutrient molybdenum. The physiological basis of molybdenum phytotoxicity is poorly understood. Plants take up molybdenum as molybdate, which is a structural analogue of sulphate. Therefore, it is presumed that elevated molybdate concentrations may hamper the uptake and subsequent metabolism of sulphate, which may induce sulphur deficiency.
  • In the current research, Chinese cabbage (Brassica pekinensis) seedlings were exposed to 50, 100, 150 and 200 μm Na2MoO4 for 9 days.
  • Leaf chlorosis and a decreased plant growth occurred at concentrations ≥100 μm . Root growth was more affected than shoot growth. At ≥100 μm Na2MoO4, the sulphate uptake rate and capacity were increased, although only when expressed on a root fresh weight basis. When expressed on a whole plant fresh weight basis, which corrects for the impact of molybdate on the shoot‐to‐root ratio, the sulphate uptake rate and capacity remained unaffected. Molybdate concentrations ≥100 μm altered the mineral nutrient composition of plant tissues, although the levels of sulphur metabolites (sulphate, water‐soluble non‐protein thiols and total sulphur) were not altered. Moreover, the levels of nitrogen metabolites (nitrate, amino acids, proteins and total nitrogen), which are generally strongly affected by sulphate deprivation, were not affected. The root water‐soluble non‐protein thiol content was increased, and the tissue nitrate levels decreased, only at 200 μm Na2MoO4.
  • Evidently, molybdenum toxicity in Chinese cabbage was not due to the direct interference of molybdate with the uptake and subsequent metabolism of sulphate.
  相似文献   

4.
Biological nitrogen fixation, the reduction of chemically inert dinitrogen to bioavailable ammonia, is a central process in the global nitrogen cycle highly relevant for life on earth. N2 reduction to NH3 is catalyzed by nitrogenases exclusively synthesized by diazotrophic prokaryotes. All diazotrophs have a molybdenum nitrogenase containing the unique iron‐molybdenum cofactor FeMoco. In addition, some diazotrophs encode one or two alternative Mo‐free nitrogenases that are less efficient at reducing N2 than Mo‐nitrogenase. To permit biogenesis of Mo‐nitrogenase and other molybdoenzymes when Mo is scarce, bacteria synthesize the high‐affinity molybdate transporter ModABC. Generally, Mo supports expression of Mo‐nitrogenase genes, while it represses production of Mo‐free nitrogenases and ModABC. Since all three nitrogenases and ModABC can reach very high levels at suitable Mo concentrations, tight Mo‐mediated control saves considerable resources and energy. This review outlines the similarities and differences in Mo‐responsive regulation of nitrogen fixation and molybdate transport in diverse diazotrophs.  相似文献   

5.
An overview is provided of the molybdenum‐ and tungsten‐containing enzymes that catalyze the interconversion of formate and CO2, focusing on common structural and mechanistic themes, as well as a consideration of the manner in which the mature Mo‐ or W‐containing cofactor is inserted into apoprotein.  相似文献   

6.
The imbalance of C, N, and P caused by the spilled oil could be regulated by the addition of nitrogen and phosphorous. Moreover, different kinds of N and P sources were used in order to stimulate oil biodegradation under laboratory and field conditions, but the results were conflicting. To evaluate the effectiveness of nutrient supplementation, N sources (NO3‐N and NH4‐N) and P sources (PO4‐P) were applied to the simulated diesel‐polluted seawater in the N/P ratio of 10:1 and 20:1, respectively. The results showed that the addition of nutrients increased the oil biodegradation rate and the counts of petroleum degrading bacteria (PDB) and heterotrophic bacteria (HB). A strongly positive correlation existed (the interrelated coefficient was nearly 0.9) between the percentage ratio of PDB/HB and the oil biodegradation rates, and therefore the percentage ratio of PDB/HB could be used as a good indicator to predict oil biodegradation. Among the four samples treated with nutrients, the biodegradation efficiency of the group amended with NO3‐N and PO4‐P in the ratio of 10:1 (10NO3‐P group) was as much as 75.8 %, while in the 10NH4‐P, 20NO3‐P and 20NH4‐P groups this value was 61.3 %, 52.4 % and 40.5, respectively. It would take natural degradation without nutrient supplementation about 78 days to achieve the result obtained within 14 days with 10NO3‐P amendment . Chemical and microbiological analyses confirmed that the addition of nutrients in the same N/P ratio remarkably enhanced the biodegradation rate and the counts of microorganisms in the NO3‐N treated groups, indicating that the microorganisms tend to utilize NO3‐N rather than NH4‐N as their growth N source. When the same kind of N source was added to the system, the promoted efficiency in the 10:1 (N/P ratio) groups was notable compared to the 20:1 groups, i.e., adding nutrients in the ratio of 10:1 is superior in the stimulation of oil biodegradation to the ratio of 20:1.  相似文献   

7.
The efficacy of indigenous microorganisms to degrade diesel oil in contaminated mainland sites in Singapore was investigated. A semi‐scale trial was made by spiking topsoil with 6 % [w/w] of diesel oil. The results indicated that in the presence of NPK commercial (Rosasol®) fertilizer a 53 % reduction in contaminant concentration was recorded after 60 days compared to untreated controls while the addition of a mixture of urea and K2HPO4 effected a 48 % reduction in the Total Recoverable Petroleum Hydrocarbons. A commercial culture and an enriched/isolated microbial association proved to be the least effective with 25 and 9 % reductions, respectively. The results confirmed the bioremediation potential of indigenous microorganisms for diesel‐oil contaminated mainland soil. Identification of the persistent compounds was done and perceived as a tool in decision‐making on strategies for speeding up of the degradation process to achieve clean‐up standards in shorter remediation periods.  相似文献   

8.
Anodically electrodeposited amorphous molybdenum sulfide (AE‐MoSx) has attracted significant attention as a non‐noble metal electrocatalyst for its high activity toward the hydrogen evolution reaction (HER). The [Mo3S13]2? polymer‐based structure confers a high density of exposed sulfur moieties, widely regarded as the HER active sites. However, their intrinsic complexity conceals full understanding of their exact role in HER catalysis, hampering their full potential for water splitting applications. In this report, a unifying approach is adopted accounting for modifications in the inherent electrochemistry (EC), HER mechanism, and surface species to maximize the AE‐MoSx electroactivity over a broad pH region (0–10). Dramatic enhancements in HER performance by selective electrochemical cycling within reductive (overpotential shift, ηHER ≈ ?350 mV) and electro‐oxidative windows (ηHER ≈ ?290 mV) are accompanied by highly stable performance in mildly acidic electrolytes. Joint analysis of X‐ray photoelectron spectroscopy, Raman, and EC experiments corroborate the key role of bridging and terminal S ligands as active site generators at low pH, and reveal molybdenum oxysulfides (Mo5+OxSy) to be the most active HER moiety in AE‐MoSx in mildly acidic‐to‐neutral environments. These findings will be extremely beneficial for future tailoring of MoSx materials and their implementation in commercial electrolyzer technologies.  相似文献   

9.
A series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear 1H‐, 13C‐, 15N‐, and 195Pt‐NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA‐1), lung (A549), and colon carcinoma (SW480). In the cisplatin‐sensitive CH1/PA‐1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane‐1,2‐diamine)platinum(IV) series, IC50 values in the nanomolar range were found.  相似文献   

10.
New dinuclear molybdenum(V) complexes have been obtained by the reaction of [Mo2O3(acac)4] (acac=acetilacetonate ion) with the polydentate ligands, β′-hydroxy-β-enaminones. All prepared complexes consist of Mo2O4 2+ core coordinated by two ligands as in the β-diketonates only through two donor oxygen atoms. Such bonding gives the opportunity for the sixth coordination place around molybdenum to be completed by the monodentate solvent molecule D. All compounds have been characterized by means of elemental analyses, one- and two-dimensional NMR spectroscopy, IR spectroscopy as well as by thermal analyses. The molecular and crystal structures of the molybdenum(V) complexes 1a and 1b coordinated by two different isomeric ligands as well as of the isomer a itself have been determined by a single crystal X-ray diffraction method.  相似文献   

11.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   

12.
We compared the Q10 relationship for root‐derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root‐ and mycorrhiza‐free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5–15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root‐associated and non‐root‐associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere‐associated microorganisms when modelling the effects of global climate change.  相似文献   

13.

A comparison is made between existing mathematical models and experimental data that relate the reduction of the saturated hydraulic conductivity (K) of a porous medium to the porosity reduction caused by microbial growth. The models yielded a realistic prediction of a data set obtained with a model porous medium consisting of millimeter‐size glass spheres, but failed to predict the clogging behaviour observed in smaller‐than‐1‐mm sand. A new modelling approach, semi‐mechanistic in nature, is proposed that gives good predictions of fine sand media as well. It relaxes the assumption about uniformly‐thick biofilms by allowing a second arrangement to occur, i.e. discrete plugs filling the pore lumen. The new model requires input data on two intrinsic properties of the system, which renders it sufficiently flexible as to fit very different data sets. The two model parameters are Kmin, the minimum K value when all porosity is filled with microorganisms, and Bc, the biovolume fraction at which most cell detachment from biofilm occurs.  相似文献   

14.
Tailor‐made microorganisms Microbial diversity provides unlimited resources for the development of novel industrial processes and products. Since the beginning of the 20th century microorganisms have been successfully applied for the large scale production of bio‐based products. In recent years, modern methods of strain development and Synthetic Biology have enabled biotech engineers to design even more sophisticated and tailor‐made microorganisms. These microbes serve industrial processes for the production of bulk chemicals, enzymes, polymers, biofuels as well as plant‐derived ingredients such as Artemisinin in an ecologically and economically sustainable and attractive fashion. In the future, production of advanced biofuels, microbial fuel cells, CO2 as feedstock and microbial cellulose are research topics as well as challenges of global importance. Continuous efforts in microbiology and biotechnology research will be pivotal for white biotechnology to gain more momentum in transforming the chemical industry towards a knowledge based bio‐economy.  相似文献   

15.
Soil denitrification is a major source of nitrous oxide emission that causes ozone depletion and global warming. Low soil pH influences the relative amount of N2O produced and consumed by denitrification. Furthermore, denitrification is strongly inhibited in pure cultures of denitrifying microorganisms below pH 5. Soils, however, have been shown to denitrify at pH values as low as pH 3. Here we used a continuous bioreactor to investigate the possibility of significant denitrification at low pH under controlled conditions with soil microorganisms and naturally available electron donors. Significant NO3 and N2O reduction were observed for 3 months without the addition of any external electron donor. Batch incubations with the enriched biomass showed that low pH as well as low electron donor availability promoted the relative abundance of N2O as denitrification end‐product. Molecular analysis of the enriched biomass revealed that a Rhodanobacter‐like bacterium dominated the community in 16S rRNA gene libraries as well as in FISH microscopy during the highest denitrification activity in the reactor. We conclude that denitrification at pH 4 with natural electron donors is possible and that a Rhodanobacter species may be one of the microorganisms involved in acidic denitrification in soils.  相似文献   

16.
Micro‐supercapacitors (MSCs) as a new class of energy storage devices have attracted great attention due to their unique merits. However, the narrow operating voltage, slow frequency response, and relatively low energy density of MSCs are still insufficient. Therefore, an effective strategy to improve their electrochemical performance by innovating upon the design from various aspects remains a huge challenge. Here, surface and structural engineering by downsizing to quantum dot scale, doping heteroatoms, creating more structural defects, and introducing rich functional groups to two dimensional (2D) materials is employed to tailor their physicochemical properties. The resulting nitrogen‐doped graphene quantum dots (N‐GQDs) and molybdenum disulfide quantum dots (MoS2‐QDs) show outstanding electrochemical performance as negative and positive electrode materials, respectively. Importantly, the obtained N‐GQDs//MoS2‐QDs asymmetric MSCs device exhibits a large operating voltage up to 1.5 V (far exceeding that of most reported MSCs), an ultrafast frequency response (with a short time constant of 0.087 ms), a high energy density of 0.55 mWh cm?3, and long‐term cycling stability. This work not only provides a novel concept for the design of MSCs with enhanced performance but also may have broad application in other energy storage and conversion devices based on QDs materials.  相似文献   

17.
A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer.  相似文献   

18.
Lipopeptides and their analogues are of increasing interest due to their amphiphilic structures and potential applications in various fields. Three purified lipopeptides analogues were obtained at the same time after two‐step column‐chromatographic purification from cell‐free broth cultivated by Bacillus licheniformis HSN 221. Analysis by ESI‐MS, GC/MS, HPLC, and Q‐TOF MS/MS revealed their primary structures as anteiso‐C15‐ and iso‐C15β‐hydroxy fatty acid‐Gln‐Leu‐Leu‐Val‐MeAsp‐Leu‐Ile, anteiso‐C15‐ and iso‐C15β‐hydroxy fatty acid‐MeGlu‐Leu‐Leu‐Val‐Asp‐Leu‐Ile and iso‐C16β‐hydroxy fatty acid‐Glu‐Leu‐Leu‐Val‐MeAsp‐Leu‐Ile, respectively. The production of two surfactin monomethyl esters and one lichenysin monomethyl ester directly from microorganisms is helpful to understand the variants of metabolites.  相似文献   

19.
Solid‐state electrocatalysis plays a crucial role in the development of renewable energy to reshape current and future energy needs. However, finding an inexpensive and highly active catalyst to replace precious metals remains a big challenge for this technology. Here, tri‐molybdenum phosphide (Mo3P) is found as a promising nonprecious metal and earth‐abundant candidate with outstanding catalytic properties that can be used for electrocatalytic processes. The catalytic performance of Mo3P nanoparticles is tested in the hydrogen evolution reaction (HER). The results indicate an onset potential of as low as 21 mV, H2 formation rate, and exchange current density of 214.7 µmol s?1 g?1cat (at only 100 mV overpotential) and 279.07 µA cm?2, respectively, which are among the closest values yet observed to platinum. Combined atomic‐scale characterizations and computational studies confirm that high density of molybdenum (Mo) active sites at the surface with superior intrinsic electronic properties are mainly responsible for the remarkable HER performance. The density functional theory calculation results also confirm that the exceptional performance of Mo3P is due to neutral Gibbs free energy (ΔGH*) of the hydrogen (H) adsorption at above 1/2 monolayer (ML) coverage of the (110) surface, exceeding the performance of existing non‐noble metal catalysts for HER.  相似文献   

20.
Structural knowledge of telomeric DNA is critical for understanding telomere biology and for the utilization of telomeric DNA as a therapeutic target. Very little is known about the structure of long human DNA sequences that may form more than one quadruplex unit. Here, we report a combination of molecular dynamics simulations and experimental biophysical studies to explore the structural and dynamic properties of the human telomeric sequence (TTAGGG)8TT that folds into two contiguous quadruplexes. Five higher order quadruplex models were built combining known single human telomeric quadruplex structures as unique building blocks. The biophysical properties of this sequence in K+ solution were experimentally investigated by means of analytical ultracentrifugation and UV spectroscopy. Additionally, the environments of loop adenines were probed by fluorescence studies using systematic single‐substitutions of 2‐aminopurine for the adenine bases. The comparison of the experimentally determined properties with the corresponding quantities predicted from the models allowed us to test the validity of each of the structural models. One model emerged whose properties are most consistent with the predictions, and which therefore is the most probable structure in solution. This structure features contiguous quadruplex units in an alternating hybrid‐1‐hybrid‐2 conformation with a highly ordered interface composed of loop residues from both quadruplexes © 2010 Wiley Periodicals, Inc. Biopolymers 93:533–548, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号