首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.  相似文献   

2.
Eukaryotic microorganisms, notably microbial algae and fungi, can have a major impact on the biodeterioration of building stone, particularly when they form green biofilms. However, comparatively little is known about the composition and structure of eukaryotic communities living on the surface of stone. The twin aims of this study were to a) characterise algal and fungal communities living on heritage structures in Belfast, UK and b) to investigate the relationship between eukaryotic community composition and a variety of substrate characteristics. We used molecular techniques (TRFLP and 454 pyrosequencing) to characterise the communities. We found unexpectedly high levels of taxonomic richness in algal communities, but low overall levels of diversity in both the algal and the fungal assemblages resulting from inequitable distributions of taxa. Our findings suggest the existence of a small pool of cosmopolitan algal species and relatively homogeneous algal communities on sandstone structures. In contrast, fungal communities were much richer and more spatially heterogeneous. It is likely that the aggressive chemical cleaning of one of the structures in the 1980s has had an ongoing impact on microbial community structure. Furthermore, whilst substrate characteristics seem to impact on the abundance/biomass of eukaryotic microbial communities, they do not influence diversity.  相似文献   

3.
A. McMinn 《Polar Biology》1996,16(4):301-307
 Algae released from fast-ice in Ellis Fjord, eastern Antarctica, made little contribution to subsequent phytoplankton growth. Dominant taxa in the interior ice community included Nitzschia cylindrus (Grun) Hasle, Navicula glaciei V.H. and a dinoflagellate cyst. Diatom mortality within the ice was high. The algal contribution to the phytoplankton from the fast ice was estimated by calculating the difference between algal biomass in ice cores taken on 14 November with those taken on 18 December 1992. The biomass of sedimenting phytoplankton was estimated using sediment traps; weekly cell counts of water were used to monitor net phytoplankton growth. The low contribution from the fast-ice of Ellis Fjord to the phytoplankton is similar to results from other Antarctic fast-ice communities but is not necessarily reflective of processes occurring within either Antarctic or Arctic pack ice communities. An algal mat growing on the base of the fast-ice had a carbon standing crop of between 0.231 gC m-2 and 0.022 gC m-2. Much of this was delivered to the water column as the ice melted while the remainder was exported. Received: 15 March 1995/Accepted: 4 September 1995  相似文献   

4.
R. Gradinger 《Polar Biology》1999,22(3):169-177
The abundance and biomass of sympagic meiofauna were studied during three cruises to the Antarctic and one summer expedition to the central Arctic Ocean. Ice samples were collected by ice coring and algal pigment concentrations and meiofauna abundances were determined for entire cores. Median meiofauna abundances for the expeditions ranged from 4.4 to 139.5 × 103 organisms m−2 in Antarctic sea ice and accounted for 40.6 × 103 organisms m−2 in Arctic multi-year sea ice. While most taxa (ciliates, foraminifers, turbellarians, crustaceans) were common in both Arctic and Antarctic sea ice, nematodes and rotifers occurred only in the Arctic. Based on the calculated biomass, the potential meiofauna ingestion rates were determined by applying an allometric model. For both hemispheres, daily and yearly potential ingestion rates were below the production values of the ice algal communities, pointing towards non-limited feeding conditions for ice meiofauna year-round. Accepted: 29 March 1999  相似文献   

5.
The communities of gammaridean amphipods associated with eight dominant macroalgal species were examined near Palmer Station, Western Antarctic Peninsula. A total of 78,415 individuals belonging to 32 amphipod taxa were identified with mean densities ranging up to 20 individuals/g algal wet wt. The most abundant amphipod taxon, Metaleptamphopus pectinatus, was found to associate predominately with the brown alga Desmarestia menziesii, while the second most common taxon, Jassa spp. occurred primarily on the red alga Gigartina skottsbergii. Non-metric multidimensional scaling analysis demonstrated that the population densities of each amphipod species and amphipod species composition were similar on the same algal species but dissimilar on different species of algae. Comparisons of amphipod communities associated with a given algal species but from different sampling sites indicated that although the structure of species-specific macroalgal-associated amphipod communities can vary across spatial scales of 3 km, 50% of the macroalgal species examined showed no significant inter-site differences in associated amphipod community structure. Spearman rank correlation analyses showed that higher abundances of amphipods occurred on the macroalgae with the highest number of branches. As many Antarctic amphipods are known consumers of macroalgae, their remarkable abundances are likely to play a significant role in mediating energy and nutrient transfer in nearshore Antarctic Peninsular macroalgal communities.  相似文献   

6.
By using autoradiographic examination of 14C labeled viable cells, natural phytoplankton communities were separated into living and non-living components. Comparisons of carbon to adenosine triphosphate (ATP) content of living cells yielded consistent ratios with depth, during periods of high and low nutrient supply at Lake Tahoe. Over time the ratio fluctuated by no more than ± 17% of the mean between the time of maximum nutrient supplies and nutrient depletion. The viability of specific phytoplankton groups was surprisingly low at times, indicating that conventional counting methods tend to overestimate live biomass. A survey of lakes differing in trophic states and having diverse phytoplankton and bacterial assemblages has shown that ATP measurements can be used as an accurate measure of total living microbial biomass.  相似文献   

7.
Pack ice, brines and seawaters were sampled in October 2003 in the East Antarctic sector to investigate the structure of the microbial communities (algae, bacteria and protozoa) in relation to the associated physico-chemical conditions (ice structure, temperature, salinity, inorganic nutrients, chlorophyll a and organic matter). Ice cover ranged between 0.3 and 0.8 m, composed of granular and columnar ice. The brine volume fractions sharply increased above −4°C in the bottom ice, coinciding with an important increase of algal biomass (up to 3.9 mg C l−1), suggesting a control of the algae growth by the space availability at that period of time. Large accumulation of NH4 + and PO4 3− was observed in the bottom ice. The high pool of organic matter, especially of transparent exopolymeric particles, likely led to nutrients retention and limitation of the protozoa grazing pressure, inducing therefore an algal accumulation. In contrast, the heterotrophs dominated in the underlying seawaters.  相似文献   

8.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   

9.
Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.  相似文献   

10.
Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone‐associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone‐associated communities also had distinct functional attributes, with granite‐associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock‐dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre‐disposed to different ecological strategies (symbiotic versus free‐living lifestyles) depending on the rock type.  相似文献   

11.
Light limitations to algal growth in tropical ecosystems   总被引:1,自引:0,他引:1  
1. Spatial and temporal variations in algal concentrations are controlled in many aquatic ecosystems by the availability of solar irradiance, rather that nutrients or grazing. In such light limiting conditions, changes in the optical or hydrological characteristics of the water column will directly impact biomass concentrations. Here we develop and test an approach based on the relationship between available solar irradiance within the mixed layer and algal biomass concentrations. 2. As with most nutrient/biomass relationships, an increase in available solar energy favours an increase in biomass when light limitation prevails. The ratio between light/biomass is then used to determine a critical light requirement that can be used to estimate critical depth and compensation irradiance and open the way to exploring how changes in mixing depth and vertical attenuation may influence algal biomass concentrations. 3. This approach is used to describe real conditions in two disparate algal communities; the phytoplankton community in Lake Victoria, East Africa and the microphytobenthos community in the lacustrine system of Esteros del Iberá (South America). 4. Differences in the critical light requirement were used to examine the relative efficiency of the algal communities in their use of available solar energy. The tropical phytoplankton community showed similar energetic requirements to theoretical estimates and were found to be less efficient when compared with the phytobenthos community.  相似文献   

12.
Alien marine fishes deplete algal biomass in the Eastern Mediterranean   总被引:1,自引:0,他引:1  
One of the most degraded states of the Mediterranean rocky infralittoral ecosystem is a barren composed solely of bare rock and patches of crustose coralline algae. Barrens are typically created by the grazing action of large sea urchin populations. In 2008 we observed extensive areas almost devoid of erect algae, where sea urchins were rare, on the Mediterranean coast of Turkey. To determine the origin of those urchin-less 'barrens', we conducted a fish exclusion experiment. We found that, in the absence of fish grazing, a well-developed algal assemblage grew within three months. Underwater fish censuses and observations suggest that two alien herbivorous fish from the Red Sea (Siganus luridus and S. rivulatus) are responsible for the creation and maintenance of these benthic communities with extremely low biomass. The shift from well-developed native algal assemblages to 'barrens' implies a dramatic decline in biogenic habitat complexity, biodiversity and biomass. A targeted Siganus fishery could help restore the macroalgal beds of the rocky infralittoral on the Turkish coast.  相似文献   

13.
We conducted a manipulative field experiment to examine individual and interactive effects of scour and short-term nutrient enrichment (4 h exposure) on postspate recovery of benthic algae in a desert stream. We then compared recovery from these simulated-spate conditions to algal recovery patterns following a natural spate that increased water-column nutrient levels for 2 weeks. That event differentially scoured communities on artificial substrata in place for a long-term experiment, significantly reducing biomass in 49-day-old communities but causing no significant reduction of biomass in older, 133-day-old communities. Thus, we were able to examine recovery of scoured and non-scoured benthic algal communities under natural post-spate conditions. Both natural and simulated spates reduced actual and relative abundances of diatoms within communities. In the manipulative experiment, scoured communities accrued biomass more rapidly than those not subjected to scour, but short-term enrichment had not effect. Accrual of diatoms and green algae was stimulated by the scour manipulations, while cyanobacteria maintained equal rates of growth in all treatments. Following the natural spate, diatom and green-algal densities increased in scoured communities, but recovery of algal biomass was slow on both scoured and non-scoured substrata, primarily because cyanobacteria, the dominant algal group on all tiles, did not increase under exposure to highly nitrate-enriched waters. Rates of algal cell accrual were inversely correlated with the amount of algal biomass present at the start of a recovery sequence. Algal immigration rates measured immediately after the natural spate and during an interflood period in the same season did not differ, indicating that the algal drift pool was not augmented by disturbance. Benthic algal recovery following spates is strongly influenced by the degree of scour generated by the event, but recovery patterns are also affected by the length of post-spate enrichment and the taxonomic composition of the affected community.  相似文献   

14.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

15.
1. Atyid (Decapoda: Atyidae) shrimps influence the distribution of algal communities over different scales in tropical montane streams of Puerto Rico. Within pools of an atyid-dominated stream, atyid shrimps enhanced patchiness in algal communities along the depth gradient. Algal bands occurred in shallow pool margins where atyids did not forage (< 3 cm below water surface), with significantly greater standing crop, taxon richness, and structural complexity than deeper areas. In deeper water, atyids reduced small-scale patchiness in algal community composition and maintained a low-growing understorey turf dominated by sessile diatoms (Bacillariophyta) and, sometimes, closely cropped, filamentous blue-greens (Cyanophyta).
2. Among pools of the atyid-dominated stream, atyids interacted with light to determine algal patchiness between stream margins and deeper areas. In sunny pools, algal standing crop was 140-fold greater in pool margins than in deeper areas where atyids foraged. In shaded pools, however, standing crop in pool margins was only 5-fold greater than in deeper areas. Effects of light on algal standing crop were greater outside atyid foraging areas than within, indicating that shrimp grazing overrides the positive effects of light.
3. In contrast to the atyid-dominated stream, algal communities in an atyid-poor stream were characterized by a high biomass of loosely attached epipelic diatoms and no depth zonation. Interstream rock and shrimp transplant experiments indicated that atyids significantly reduced algal standing crop and altered community composition on rocks from atyid-poor streams within 24 h. Results support the hypothesis that atyid shrimps play a major role in determining observed interstream differences in algal communities.  相似文献   

16.
The stability of exogenous ATP in Antarctic Ross desert soils has been assessed using bioluminescence monitoring of ATP-supplemented samples. Under typical east Antarctic dry valley summer conditions (−3 to +15°C), exogenous ATP was degraded with a half-life of between 0.5 and 30 h. The rate of degradation was affected, in order of significance, by soil biomass levels, temperature and water content. Such rapid removal of exogenous ATP strongly suggests that extracellular ATP from lysed cells in cold desiccated soils does not make a significant contribution to the standing ATP titre  相似文献   

17.
Disturbance in coral reef environments commonly results in an algal community dominated by highly productive, small filamentous forms and cyanobacteria, collectively known as algal turf. Research on the types of disturbance responsible for this community structure has concentrated mainly on biological disturbance in the form of grazing, although physical and other forms of biological disturbances may be important in many coral reef areas. On the reef flat in Kaneohe Bay, Oahu, Hawaii, algal turfs grow primarily upon coral rubble that tumbles with passing swells. We manipulated the frequency of rubble tumbling in field experiments to mimic the effects of physical disturbance by abrasion and light reduction on algal biomass, canopy height, and community structure. Treatments approximated a gradient of disturbance intensities and durations that occur on the reef flat. Although sea urchins and herbivorous fishes are not widespread and abundant on the reef flat, biological disturbances to algal turf communities in the form of herbivory by small crabs and abrasion by tough macroalgae contributed significantly to the variation in algal turf biomass. Within all experiments increasing disturbance significantly reduced algal biomass and canopy heights and the community structure shifted to more disturbance-tolerant algal forms. This study shows that the chronic physical disturbances from water motion and biological disturbances other than grazing from large herbivores can control algal communities in coral reef environments.  相似文献   

18.
Currently, very few studies address the relationship between diversity and biomass/lipid production in primary producer communities for biofuel production. Basic studies on the growth of microalgal communities, however, provide evidence of a positive relationship between diversity and biomass production. Recent studies have also shown that positive diversity–productivity relationships are related to an increase in the efficiency of light use by diverse microalgal communities. Here, we hypothesize that there is a relationship between diversity, light use, and microalgal lipid production in phytoplankton communities. Microalgae from all major freshwater algal groups were cultivated in treatments that differed in species richness and functional group richness. Polycultures with high functional group richness showed more efficient light use and higher algal lipid content with increasing species richness. There was a clear correlation between light use and lipid production in functionally diverse communities. Hence, a powerful and cost‐effective way to improve biofuel production might be accomplished by incorporating diversity related, resource‐use‐dynamics into algal biomass production.  相似文献   

19.
Analysis of adenosine triphosphate (ATP) from surficial sediment layers in two antarctic lakes and two temperate lakes showed a high degree of similarity in spite of differences between trophic state, mictic state, or geographic location. Adenosine triphosphate was found at all levels sampled in temperate lake sediment cores but occasionally was present only in surficial layers of antarctic cores. Surficial sediment layers from antarctic lakes contained high chlorophylla (Chla) levels due to the extensive benthic algal mats which occur there. In some antarctic cores, Chla was detectable in deep, old mat layers, whereas Chla was not found in any of the temperate lake cores. Antarctic lake sediments appear to be unique environments where Chla molecules can remain intact for long periods of time due to low light, temperature, and microbial activity. As such, these lakes are important natural laboratories where a long history of microbial interactions can be studied without metazoan perturbation effects. Although there was much variability in concentration of Chla and ATP between samples, there appears to be no relationship between Chla or ATP levels to mictic or trophic states of the lakes. These data suggest that sediment microbial communities may be independent of environmental and biological properties of the overlying water masses.  相似文献   

20.
Rhodolith beds are built by the aggregation of free living marine benthic coralline algae. Herein, we described phytobenthic communities associated with subtidal rhodolith beds in northeastern Brazil and tested the hypothesis that depth affects their structure. We compared macroalgal assemblages from depths of 10, 15 and 20 m. The genus Lithothamnion was dominant in these beds. Rhodolith density was similar at different depths, but volume decreases as depth increases. Sixty-seven species of fleshy algae were collected. The red algal order Ceramiales was dominant. A distinct community corresponds to each sampled depth. The shallower depth presented higher values for biomass, number of species, Shannon-Wiener diversity, and Pielou's evenness. When depth and water transparency increased, the number of species and the abundance of macroalgae decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号