首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
种植香根草对铜尾矿废弃地基质化学和生物学性质的影响   总被引:6,自引:0,他引:6  
徐德聪  詹婧  陈政  高毅  谢贤政  孙庆业  豆长明 《生态学报》2012,32(18):5683-5691
通过实地调查取样和室内分析,研究铜陵水木冲铜尾矿废弃地不同时期种植香根草(Vetiveria zizanioides L.)群落(近期种植香根草群落(V.zizanioides communities were established in the recent stage,JX),中期种植香根草群落(V.zizanioides communities were established in the middle stage,ZX)和早期种植香根草群落(V.zizanioides communities were established in the early stage,OX))对尾矿基质化学性质、微生物量和土壤酶活性的影响,探讨人工植被恢复对铜尾矿废弃地基质系统的修复作用。结果表明:香根草的定植能延缓铜尾矿的酸化过程,且随着香根草定植时间的延长,0—5 cm和5—20 cm层尾矿基质中总氮和速效磷含量提高(其中,0—5 cm层总氮积累更加显著),OX下0—5 cm表层基质总氮和速效磷的平均值分别是JX下的4.64倍和22.44倍。基质微生物量C、N含量和脱氢酶、过氧化氢酶、脲酶活性也随香根草种植时间的延长而有不同程度的升高,且基质化学性质对微生物量和酶活性有影响,其中基质微生物量C、N含量、脱氢酶和过氧化氢酶活性均与电导率呈显著或极显著负相关性;而基质微生物量N和4种酶活性均与总氮含量呈显著或极显著正相关性,表明总氮含量是影响基质微生物量N和酶活性的主要因子;基质微生物量N、脱氢酶和过氧化氢酶活性还与速效磷含量呈极显著正相关性。基质中Cu、Pb含量对脱氢酶、过氧化氢酶活性和微生物量均有显著抑制作用,而Zn对基质微生物活性有一定的激活作用。生长在尾矿废弃地上的香根草不仅显著地改善了铜尾矿废弃地的基质化学性质,且有利于基质微生物量和酶活性的增加,是一种良好的矿业废弃地生态修复物种。  相似文献   

2.
生物结皮对铜尾矿废弃地土壤微生物量及酶活性的影响   总被引:4,自引:1,他引:3  
生物结皮是铜尾矿废弃地自然原生演替的最初阶段.本研究以铜陵杨山冲铜尾矿库和铜官山新铜尾矿库为对象,采用熏蒸浸提和化学分析法研究了两尾矿库不同类型生物结皮下土壤微生物量C、N及脱氢酶、过氧化氢酶、碱性磷酸酶和脲酶活性.结果表明:铜尾矿废弃地上的生物结皮能够显著提高表层尾矿中的微生物量和土壤酶活性,其中藻类结皮对土壤微生物量C、N的影响高于藓-藻混合结皮,藓类结皮的影响最小;随着土壤生物结皮类型的变化,土壤微生物区系也随之变化;各类生物结皮下表层尾矿中土壤酶活性无显著差异.相关分析表明,碱性磷酸酶活性与土壤微生物量、脱氢酶和脲酶活性呈显著正相关,但与土壤pH呈显著负相关.此外,藓类植物假根能够显著提高藓类结皮假根层的微生物量和酶活性.  相似文献   

3.
Sulfate-reducing bacteria (SRB) have been observed in mining environments, but their presence has not been linked to specific physico-chemical and mineralogical factors. The present study was undertaken to assess the presence of SRB in several Au and Cu-Zn mine tailings located near Timmins, Ont., Canada, and determine the factors responsible for their presence. Vegetated and non-vegetated mine tailings were sampled for SRB enumeration, pH, Eh, water content, total carbon content and sequential chemical extraction. Results first showed that SRB populations were present at all sites and that their distribution varied with depth. Populations were recovered from neutral pH and slightly anoxic tailings and from highly acidic (pH 2) and oxic tailings. The total carbon content of the tailings was generally low and not related to the presence of vegetation. In addition, the carbon content did not affect SRB population distribution and appeared to be more related to the type of tailings, i.e., oxidized and acidic Cu-Zn tailings contained on average more carbon than Au tailings. Results also indicated that the water content of the tailings varied greatly with depth and was not related to the presence of SRB populations. The sequential chemical extraction showed that the pyrite content of the tailings was lower in Au tailings than in Cu-Zn tailings, and that some oxidized Cu-Zn sites were depleted in pyrite due to microbial and chemical oxidation. Our results indicate that SRB could be cultured from a variety of sites and sample types, and that factors such as pH, Eh, water content and carbon content at the collection sites did not exert control on their presence.  相似文献   

4.
Abstract

An interdisciplinary approach was used to assess the biogeochemistry of three deposits of gold mine tailings in Nopiming Provincial Park, Manitoba, Canada. Each depositional site has developed varying levels of natural revegetation over the past 70 years. Although the tailings are the products of processing similar carbonate-hosted quartz-carbonate shear zones by the same methods, the physical, chemical, and hydrogeological conditions varied among sites. The sample from the barren tailings area at the Central Manitoba site was lower in pH (4.87 ± 1.34) and higher in total sulfur (337 ± 166 μmol/g) and copper (44.5 ± 20.9 μ mol/g) than samples from the other two sites. Microbial activities have impacted the biogeochemical distribution of carbon, sulfur (total, sulfide, sulfate), and iron (total, Fe(II)) in the tailings at all three sites. The microbial communities were distributed throughout the tailings, but the biomass and biodiversity were greatest at the surface in the revegetated (Ogama-Rockland) and partially revegetated (Gunner) tailings. In contrast, the most barren set of tailings (Central Manitoba) had the greatest biomass and biodiversity in the middle layer (15 cm depth), which also had the greatest abundance of metals, anions, and carbon. The distribution of fatty acid methyl esters (FAME) in the tailings was dependent on both the depth and the individual characteristics of the site. The biomass and biodiversity correlated with the physicochemical conditions, particularly as affected by water movement and hydrology. The primary determinants limiting natural attenuation of the sites may be insufficient calcite buffering, hydrogeology, and the distribution of microbes, rather than a lack of microbes.  相似文献   

5.
This study uses an ecotoxicology approach to evaluate the effectiveness of combining powdered marble as an amendment, with phytostabilization by Medicago sativa L. on the neutralization of acidic mine tailings, and the stabilization of heavy metals. The mine tailings were collected from an abandoned polymetallic mine in Southern Morocco, and mixed with powdered marble as the following proportions, 25%, 50%, and 75%. Laboratory immobilization/stabilization tests showed that the application of powdered marble in the treatments led to a significant increase in pH, and significant reductions of Cu, Zn (99%), Pb (98%), and Fe (45%). Greenhouse experiments showed that plant growth in all treatments was significantly (p ≤ 0.05) less than growth in agricultural soil. Plant growth significantly (p ≤ 0.05) decreased as the proportion of powdered marble increased. The concentration of metals in plant roots were significantly (p ≤ 0.05) higher than those of shoots. Combining immobilization by powdered marble with phytostabilization by M. sativa L. could represent a viable method of rehabilitating acidic polymetallic mine tailings.  相似文献   

6.
Sulfate-reducing bacteria (SRB) are often used in bioremediation of acid mine drainage because microbial sulfate reduction increases pH and produces sulfide that binds with metals. Mercury methylation has also been linked with sulfate reduction. Previous geochemical analysis indicated the occurrence of sulfate reduction in mine tailings, but no molecular characterization of the mine tailings-associated microbial community has determined which SRB are present. This study characterizes the bacterial communities of two geochemically contrasting, high-methylmercury mine tailing environments, with emphasis on SRB, by analyzing small subunit (SSU) rRNA genes present in the tailings sediments and in enrichment cultures inoculated with tailings. Novel Deltaproteobacteria and Firmicutes -related sequences were detected in both the pH-neutral gold mine tailings and the acidic high-sulfide base-metal tailings. At the subphylum level, the SRB communities differed between sites, suggesting that the community structure was dependent on local geochemistry. Clones obtained from the gold tailings and enrichment cultures were more similar to previously cultured isolates whereas clones from acidic tailings were more closely related to uncultured lineages identified from other acidic sediments worldwide. This study provides new insights into the novelty and diversity of bacteria colonizing mine tailings, and identifies specific organisms that warrant further investigation with regard to their roles in mercury methylation and sulfur cycling in these environments.  相似文献   

7.
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (~100–1000 nmol cm? 3d?1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.  相似文献   

8.
Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth''s extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions.  相似文献   

9.
Microbial diversity was characterized in mining-impacted soils collected from two abandoned uranium mine sites, the Edgemont and the North Cave Hills, South Dakota, using a high-density 16S microarray (PhyloChip) and clone libraries. Characterization of the elemental compositions of soils by X-ray fluorescence spectroscopy revealed higher metal contamination including uranium at the Edgemont than at the North Cave Hills mine site. Microarray data demonstrated extensive phylogenetic diversity in soils and confirmed nearly all clone-detected taxonomic levels. Additionally, the microarray exhibited greater diversity than clone libraries at each taxonomic level at both the mine sites. Interestingly, the PhyloChip detected the largest number of taxa in Proteobacteria phylum for both the mine sites. However, clone libraries detected Acidobacteria and Bacteroidetes as the most numerically abundant phyla in the Edgemont and North Cave Hills mine sites, respectively. Several 16S rDNA signatures found in both the microarrays and clone libraries displayed sequence similarities with yet-uncultured bacteria representing a hitherto unidentified diversity. Results from this study demonstrated that highly diverse microbial populations were present in these uranium mine sites. Diversity indices indicated that microbial communities at the North Cave Hills mine site were much more diverse than those at the Edgemont mine site.  相似文献   

10.

Aims

To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability.

Methods and Results

To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture‐based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple‐metal resistant, with 15% exhibiting dual‐metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, < 0·05) between multiple‐metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0–20 m) and middle (20–40 m) tailings zones being highly significant (< 0·01) from the lower zone (40–60 m) and the difference in diversity of the upper and middle tailings zone being significant (< 0·05). Phylotypes closely related to well‐known sulfate‐reducing and iron‐reducing bacteria were identified with low abundance, yet relatively high diversity.

Conclusions

The presence of a population of metabolically‐diverse, metal‐resistant micro‐organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long‐term geochemistry of the tailings.

Significance and Impact of the study

This study is the first investigation of the diversity and functional potential of micro‐organisms present in low permeability, high pH uranium mine tailings.  相似文献   

11.
Over the course of 3 years (1997–1999), 72 stream sites were sampled for epilithic diatom communities. The analysis of these samples has led to the identification of over 325 species of diatoms. In addition to sampling the diatom community, selected physical and chemical parameters were recorded from each stream reach. These parameters included pH, specific conductance, current velocity, SRP, nitrate, silica, and total alkalinity. Canonical Correspondence Analysis (CCA) was used to identify influential environmental parameters and to assess the response of the diatom community to prominent anthropogenic inputs in the region (i.e. coal mine drainage, eutrophication). The initial analyses indicate that pH was the most influential environmental parameter along the first CCA axis. This shift was not unexpected, as acid mine drainage (AMD) in the region leads to a wide range of pH values (2.8–7.93). The highly acidic sites were characterized by species of the genus Eunotia (specifically E. exigua and E. steineckei), Frustulia rhomboides, and Pinnularia subcapitata. Furthermore, Achnanthidium minutissimum was the most widely distributed of the diatom species encountered, being found at 94% of the sites sampled. Streams that fluctuated between acidic and circumneutral pH (termed “teeter‐totter”) had greater abundances of Brachysira vitrea than other streams in this survey. Further implications for the use of these diatom communities as biomonitoring tools and the distribution of assemblages within the Western Allegheny Plateau will be discussed.  相似文献   

12.
Net acid-generating capacities of 39.74 kg of H2SO4 per ton (ca. 0.05 kg/kg) (pH 2.68) for the Lemoine copper mine tailings (closed ca. 8 years ago; located 40 km west of Chibougamau, Quebec, Canada) and 16.07 kg of H2SO4 per ton (ca. 0.02 kg/kg) (pH 3.01) for the Copper Rand tailings (in current use and 50 km distant [east] from those of Lemoine) demonstrate that these sulfide tailings can support populations of acidophilic thiobacilli. Oxidized regions in both tailings environments were readily visible, were extremely acidic (Lemoine, pH 2.36; Copper Rand, pH 3.07), and provided natural isolates for our study. A 10% (wt/vol) oxalic acid treatment, which solubilizes both ferric sulfate and ferric hydroxide precipitates (B. Ramsay, J. Ramsay, M. deTremblay, and C. Chavarie, Geomicrobiol. J. 6:171-177, 1988), enabled the recovery of intact bacterial cells from the tailings material and from liquid synthetic medium for lipopolysaccharide analysis. No viable cells could be cultured after this oxalic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electro-phoretic profiles of lipopolysaccharides extracted from the Lemoine tailings were complex, indicating a heterogeneous population of Thiobacillus ferrooxidans. Six T. ferrooxidans subspecies as identified by lipopolysaccharide analysis (i.e., lipopolysaccharide chemotypes) were eventually isolated from a total of 112 cultures from the Lemoine tailings. Using the same isolate and lipopolysaccharide typing techniques, we identified only a single lipopolysaccharide chemotype from 20 cultures of T. ferrooxidans isolated from the Copper Rand tailings. This homogeneity of lipopolysaccharide chemotype was much different from what was found for the older Lemoine tailings and may reflect a progressive lipopolysaccharide heterogeneity of Thiobacillus isolates as tailings leach and age.  相似文献   

13.
对铜陵市凤凰山铜尾矿复垦地禾本科(矛叶荩草AL、白茅IC)和豆科(野豌豆GS)等3类典型植物群丛及外围对照禾本科(毛马唐)植物群丛下的土壤线虫群落进行调查.共分离得到1277 条土壤线虫,隶属于51属,平均密度590条·100 g-1干土.采用多样性指数和土壤食物网结构指数等分析铜尾矿复垦地土壤线虫群落的分布特征.结果表明: 铜尾矿复垦地3类植物群丛下土壤线虫群落的类群总数和Shannon〖KG-*4〗多样性指数明显小于毛马唐对照组.对比铜尾矿复垦地和邻近自然栖息地不同植物群丛下的土壤线虫群落生态指数,发现野豌豆群丛下土壤食物网结构较成熟,土壤有机质分解以细菌分解通道为主;生态系统较不稳定,低度干扰;表明该豆科植物群丛下的土壤食物网具有较大的发展潜力,从而提高铜尾矿复垦地的生态稳定性.白茅与矛叶荩草群丛下土壤食物网处于结构化状态,土壤有机质分解以真菌分解通道为主;生态系统较稳定,无干扰;表明禾本科植物群丛下的土壤食物网处于较低层次的发展状态.  相似文献   

14.
安徽某铁矿不同矿山废水库中微生物群落结构特征   总被引:2,自引:0,他引:2  
【目的】研究安徽某铁矿不同矿山废水库中微生物群落结构特征及其影响因素。【方法】对比分析了该铁矿3个大型废水库的地球化学特征,并用高通量测序技术研究了水体中微生物群落组成,进而用统计学方法解析了环境因子对微生物群落结构的影响。【结果】3个废水库中有2个为酸性,1个为中性,理化性质有明显的差异。近年形成的塌方采场废水库(TF) pH仅为2.55±0.01,Fe浓度高达154.95±0.78mg/L,SO_4~(2–)浓度为3374.86±3.81mg/L;形成于20世纪70年代的排土场废水库(PT)酸性略弱(pH 2.9±0.02),Fe浓度(34.57±4.00 mg/L)与TF相比明显降低,SO_4~(2–)浓度则高达10398.98±626.70 mg/L;东沙采场废水库(DS)则为中性(pH7.55),但SO_4~(2–)仍高达4162.99mg/L,主要的金属离子为Mg(594.90 mg/L)、Ca (650.10 mg/L)。3个废水库的原核生物多样性随pH的升高而升高。两个酸性废水库的原核生物组成较为接近,但TF的化能自养菌含量较高(69.54%±2.89%),PT的化能异养菌含量较高(64.45%±13.81%)。自养铁氧化菌Ferrovum在TF中的比例高达(64.17±1.84)%,在PT中则下降为(35.39±13.74)%。但PT中含有丰富的化能异养嗜酸菌如Acidicapsa(15.75%±3.99%)、Acidiphilium(10.65%±2.05%)、Acidisphaera (6.34%±1.02%)等。DS中虽然也含有较高的金属离子和SO_4~(2–),但其中的原核生物组成与TF和PT截然不同,主要为Limnohabitans (18.47%)、Rhodobacter (8.42%)等。3个废水库的真核生物群落主要由藻类组成,酸水库TF和PT中主要为棕鞭藻属(Ochromonas)和胶球藻属(Coccomyxa),棕鞭藻属在TF中(53.65%±2.02%)占优势,胶球藻属在PT中(68.84±10.4%)占优势,中性废水库DS中则主要是小环藻属(Cyclotella)(49.85%)。经统计学分析,pH是影响矿山废水微生物多样性和群落组成的主要环境因素。  相似文献   

15.

The microbial communities have been investigated in the subsurface waters of the Carnoulès pyrite-rich tailings impoundment (France) for two hydrological situations characterized by the presence of oxygenated waters during winter and suboxic conditions in early autumn. In these acidic waters (2–5) characterized by elevated concentrations of Fe (1608–3354 mg · l?1), As (130–434 mg · l?1) and sulfates (5796–14318 mg · l?1) and variable dissolved oxygen content, the cultivable bacteria found in these system are Thiomonas and Acidithiobacillus ferrooxidans. Molecular methods, Terminal-Restriction Fragment Length Polymorphism (T-RFLP), and 16S rRNA encoding gene library analysis indicate low diversity. The environment is dominated by only a few types of microorganisms, with 70–80% of the whole bacterial population assigned to two or three Terminal-Restriction Fragments (T-RFs). Most of these organisms are uncultured, newly described, or recently associated with acid mine drainage. Modifications of the community structure are observed as a function of the sampling period and seem to be related to the aqueous chemistry of the tailings water. At low Dissolved Oxygen (DO = 1 mg · l?1) concentrations and moderately acidic conditions (pH = 5.7), the dominant organisms are related to the uncultured clone BA31 affiliated with Desulfosarcina variabilis, a sulfate-reducing bacteria (SRB), Acidithiobacillus ferrooxidans and the uncultured clone BVB20, closely related to Thiobacillus. At high (12 mg · l?1) DO concentrations and low (< 2) pH values, the microbial diversity is less important and 65% of the population is assigned to the uncultured bacterium clone AS6 related to Desulfosarcina variabilis.  相似文献   

16.
不同植物群落下酸化尾矿养分状况及土壤酶活性   总被引:4,自引:0,他引:4  
调查不同植被群落下铜尾矿的养分状况及土壤酶活性的变化动态,通过常规方法测定了尾矿的pH和电导率,以及有机质,总氮,有效磷,速效钾的含量。用底物反应法测定了过氧化氢酶,芳基硫酯酶,脲酶,酸性磷酸化酶和脱氢酶的活性。结果表明,与酸化的裸露尾矿相比,定居其上的芦苇(Phragmites australis)、狗牙根(Cynodon dactylon)和双穗雀稗(Paspalum distichum)均能显著增加尾矿基质pH值(从3.6上升到5.4),降低电导率,减缓尾矿酸化过程。芦苇和狗牙根能够显著提高尾矿基质中N、K和有机质含量(P<0.05),增加尾矿中的养分。3种植物群落下有效磷较裸露尾矿没有显著增加。植物的定居显著提高了尾矿中过氧化氢酶、芳基硫脂酶和脲酶的活性(P<0.05);但酸性磷酸化酶和脱氢酶活性没有显著提高。研究表明,植物对尾矿有明显的改良作用,而且芦苇和狗牙根优于双穗雀稗。在各种植被条件的尾矿中除酸性磷酸化酶以外的其它实验土壤酶活性均与尾矿中有机质和总氮呈极显著正相关(P<0.01)。  相似文献   

17.
Biological monitoring of fishes in the Fly River system in Papua New Guinea has been carried out in relation to the input into the system of mine wastes from the Ok Tedi copper mine. A total of 86 fish species representing 32 families has been recorded from sites in the main river channel since the commencement of monitoring operations in 1983. Catfish in the families Ariidae (16 spp.) and Plotosidae (9 spp.) were the dominant groups overall, although Nematolosa herrings were the most numerous species, forming over 37% of the catch. However, barramundi, Lates calcarifer, comprised the greatest biomass, forming over 30% of the overall catch. Fish catch biomass at most sites showed considerable temporal and spatial variation over the period of sampling. However, significant reductions in biomass, ranging from 65% to 96%, were recorded at most sites in the Ok Tedi, middle and upper Fly. The greatest declines in biomass were recorded in the Ok Tedi at sites closest to the mine, although reductions up to 73% were also recorded at sites in the middle Fly. Barramundi, which formed a high proportion of catch biomass at many sites, particularly in the middle Fly, declined in number at most sites following peak numbers in the early 1990's. The main causative factors involved in the overall declines in fish catches, including both mine-related and non-mine-related factors, are discussed. It is concluded that loss of fish habitat through increased river bed aggradation, due to the input of mined waste rock and tailings, is likely to be the main causal factor. However, other mine-related factors, such as elevated levels of dissolved and particulate copper, and other non-mine-related factors, such as introduced species, may also be involved in declining fish catches.  相似文献   

18.
We studied the protist grazers of Boiling Springs Lake (BSL), an acid geothermal feature in Lassen Volcanic National Park, using a combination of culture and genetic approaches. The major predator in BSL is a vahlkampfiid ameba closely related (95% 18S+ITS rRNA identity) to Tetramitus thermacidophilus, a heterolobose ameboflagellate recently isolated from volcanic geothermal acidic sites in Europe and Russia, as well as an uncultured heterolobosean from the nearby Iron Mountain acid mine drainage site. Tetramitus thermacidophilus strain BSL is capable of surviving the physical extremes of BSL, with optimal growth at 38–50 °C and pH 2–5. This bacterivore also ingested conidiospores of the ascomycete Phialophora sp., but ultrastructural observations reveal the latter may not be readily digested, and conidia were not separable from the ameoboflagellate culture, suggesting a possible symbiosis. DGGE fingerprint transects studies showed the organism is restricted to near‐lake environs, and we detected an average of ~500 viable cysts/cm3 sediment on the shoreline. Other grazing protists were isolated from lakeshore environments, including the lobose amebae Acanthamoeba sp. and Hartmannella sp., and the kinetoplastid flagellate Bodo sp., but none could tolerate both low pH and high temperature. These appear to be restricted to cooler near lake geothermal features, which also contain other potential grazer morphotypes observed but not successfully cultured, including ciliates, euglenids, testate amebae, and possible cercozoans. We compare the food web of BSL with other acidic or geothermal sites, and discuss the impact of protists in this unique environment.  相似文献   

19.
The bioleaching experiment was conducted for the removal of heavy metals from mine tailings. A fungal strain was isolated from the gold mine tailings and it has been identified as Aspergillus fumigatus based on its 18S rDNA analysis. Bioleaching using A. fumigatus was carried out in bioleaching step processes (one-step and two-step) at various tailings concentrations (1%, 2%, 4%, and 8% [w/v]). In the one-step bioleaching process where fungi were cultivated in the presence of the tailings, concentration of oxalic acid was the highest among the organic acids produced. On the other hand, in the two-step bioleaching process where the metabolic products of fungal growth, which have been separated from its biomass, were used, citric acid was dominant. In the one-step process, the highest As (62%), Fe (58%), Mn (100%), and Zn (54%) removals were observed at the lowest tailings concentration (1%). The removal of Pb at 1% tailings concentration in the one-step process was 56%, whereas 88% removal was achieved in the two-step process where citric acid was dominant. In general, heavy metals removal efficiency decreased with increased tailings of the concentration in both bioleaching processes. This study shows the possibility of using A. fumigatus to bioleach hazardous heavy meals from gold mine tailings.  相似文献   

20.
Soil fungi were isolated from two different soil types using alkaline and slightly acidic media (alkaline cornmeal agar (AC-MA), pH 9.7; cornmeal agar (CMA), pH 6.0) to study their distribution. Different species were obtained on each isolation medium. The number of species ofAcremonium andFusarium increased on ACMA, though many species growing well in acidic conditions were not detected on ACMA. Most of the fungi isolated on ACMA, especially from the alkaline soils, were alkalophiles or alkali-tolerants that can grow at pH 10.Acremonium alternatum, A. furcatum, Acremonium sp. 6,Gliocladium cibotii (YBLF 575),Phialophora geniculata, Stachylidium bicolor andStilbella annulata were alkalophilic, of whichAcremonium sp. 6 was the most pronounced alkalophile. Ability to grow under alkaline conditions, as well as under acidic conditions, was common in manyAcremonium species. The use of alkaline medium facilitates the isolation of alkalophilic soil fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号