首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micromolar nitric oxide (NO) rapidly (ms) inhibits cytochrome c oxidase in turnover with physiological substrates. Two reaction mechanisms have been identified leading, respectively, to formation of a nitrosyl- [a3(2+) -NO] or a nitrite- [a3(3+) -NO2-] derivative of the enzyme. In the presence of O2, the nitrosyl adduct recovers activity slowly, following NO displacement at k' approximately equal to 0.01 s(-1) (37 degrees C); the recovery of the nitrite adduct is much faster. Relevant to pathophysiology, the enzyme does not degrade NO by following the first mechanism, whereas by following the second one it promotes NO oxidation and disposal as nitrite/nitrate. The reaction between NO and cytochrome c oxidase has been investigated at different integration levels of the enzyme, including the in situ state, such as in mouse liver mitochondria or cultured human SY5Y neuroblastoma cells. The respiratory chain is inhibited by NO, either supplied exogenously or produced endogenously via the NO synthase activation. Inhibition of respiration is reversible, although it remains to be clarified whether reversibility is always full and how it depends on concentration of and time of exposure to NO. Oxygraphic measurements show that cultured cells or isolated state 4 mitochondria exposed to micromolar (or less) NO recover from NO inhibition rapidly, as if the nitrite reaction was predominant. Mitochondria in state 3 display a slightly more persistent inhibition than in state 4, possibly due to a higher accumulation of the nitrosyl adduct. Among a number of parameters that appear to control the switch over between the two mechanisms, the concentration of reductants (reduced cytochrome c) at the cytochrome c oxidase site has been proved to be the most relevant one.  相似文献   

2.
Nitric oxide (NO) plays an important role in the control of vascular tone. NO donors have therapeutic use and the most used NO donors, nitroglycerin and sodium nitroprusside have problems in their use. Thus, new NO donors have been synthesized to minimize these undesirable effects. Nytrosil ruthenium complexes have been studied as a new class of NO donors. trans-[RuCl([15]aneN(4))NO](2+), induces vasorelaxation only in presence of reducing agent. In this study, we characterized the mechanisms of vasorelaxation of trans-[RuCl([15]aneN(4))NO](2+) in denuded rat aorta and identified which NO forms are involved in this relaxation. We also evaluated the effect of this NO donor in decreasing the cytosolic Ca(2+) concentration ([Ca(2+)]c) of the vascular smooth muscle cells. Vasorelaxation to trans-[RuCl([15]aneN(4))NO](2+) (E(max): 101.8 +/- 2.3%, pEC(50): 5.03 +/- 0.15) was almost abolished in the presence of the NO* scavenger hydroxocobalamin (E(max): 4.0 +/- 0.4%; P < 0.001) and it was partially inhibited by the NO(-) scavenger L-cysteine (E(max): 79.9 +/- 6.9%, pEC(50): 4.41 +/- 0.06; P < 0.05). The guanylyl cyclase inhibitor ODQ reduced the E(max) (57.7 +/- 4.0%, P < 0.001) and pEC(50) (4.21 +/- 0.42, P < 0.01) and the combination of ODQ and TEA abolished the response to trans-[RuCl([15]aneN(4))NO](2+). The blockade of voltage-dependent (K(v)), ATP-sensitive (K(ATP)), and Ca(2+)-activated (K(Ca) K(+) channels reduced the vasorelaxation induced by trans-[RuCl([15]aneN(4))NO](2+). This compound significantly reduced [Ca(2+)]c (from 100% to 85.9 +/- 3.5%, n = 4). In conclusion, our data demonstrate that this NO donor induces vascular relaxation involving NO* and NO(-) species, that is associated to a decrease in [Ca(2+)]c. The mechanisms of vasorelaxation involve guanylyl cyclase activation, cGMP production and K(+) channels activation.  相似文献   

3.
Na(+) cotransporters have a substantial role in neuronal damage during brain hypoxia. We proposed these cotransporters have beneficial roles in oxygen-sensing mechanisms that increase periarteriolar nitric oxide (NO) concentration ([NO]) during mild to moderate oxygen deprivation. Our prior studies have shown that cerebral neuronal NO synthase (nNOS) is essential for [NO] responses to decreased oxygen tension and that endothelial NO synthase (eNOS) is of little consequence. In this study, we explored the mechanisms of three specific cotransporters known to play a role in the hypoxic state: KB-R7943 for blockade of the Na(+)/Ca(2+) exchanger, bumetanide for the Na(+)-K(+)-2Cl(-) cotransporter, and amiloride for Na(+)/H(+) cotransporters. In vivo measurements of arteriolar diameter and [NO] at normal and locally reduced oxygen tension in the rat parietal cortex provided the functional analysis. As previously found for intestinal arterioles, bumetanide-sensitive cotransporters are primarily responsible for sensing reduced oxygen because the increased [NO] and dilation were suppressed. The Na(+)/Ca(2+) exchanger facilitated increased NO formation because blockade also suppressed [NO] and dilatory responses to decreased oxygen. Amiloride-sensitive Na(+)/H(+) cotransporters did not significantly contribute to the microvascular regulation. To confirm that nNOS rather than eNOS was primarily responsible for NO generation, eNOS was suppressed with the fusion protein cavtratin for the caveolae domain of eNOS. Although the resting [NO] decreased and arterioles constricted as eNOS was suppressed, most of the increased NO and dilatory response to oxygen were preserved because nNOS was functional. Therefore, nNOS activation secondary to Na(+)-K(+)-2Cl(-) cotransporter and Na(+)/Ca(2+) exchanger functions are key to cerebral vascular oxygen responses.  相似文献   

4.
Numerous hormones and neurotransmitters activate cells by increasing cytosolic calcium concentration ([Ca(2+)](i)), a key regulatory factor for many cellular processes. A pivotal feature of these Ca(2+) signals is the release of Ca(2+) from intracellular stores, which is followed by activation of extracellular calcium influx, allowing refilling of the stores by SERCA pumps associated with the endoplasmic reticulum. Although the mechanisms of calcium release and calcium influx have been extensively studied, the biology of the Ca(2+) stores is poorly understood. The presence of heterogeneous calcium pools in cells has been previously reported [1] [2] [3]. Although recent technical improvements have confirmed this heterogeneity [4], knowledge about the mechanisms underlying Ca(2+) transport within the stores is very scarce and rather speculative. A recent study in polarized exocrine cells [5] has revealed the existence of Ca(2+) tunneling from basolateral stores to luminal pools, where Ca(2+) is initially released upon cell activation. Here, we present evidence that, during stimulation, Ca(2+) transported into basolateral stores by SERCA pumps is conveyed toward the luminal pools driven by proton gradients generated by vacuolar H(+)-ATPases. This finding unveils a new aspect of the machinery of Ca(2+) stores.  相似文献   

5.
Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising stem cell source for cell transplantation. We demonstrate that undifferentiated ASCs display robust oscillations of intracellular calcium [Ca(2+) ](i) which may be associated with stem cell maintenance since oscillations were absent in endothelial cell differentiation medium supplemented with FGF-2. [Ca(2+) ](i) oscillations were dependent on extracellular Ca(2+) and Ca(2+) release from intracellular stores since they were abolished in Ca(2+) -free medium and in the presence of the store-depleting agent thapsigargin. They were inhibited by the phospholipase C antagonist U73,122, the inositol 1,4,5-trisphosphate (InsP(3) ) receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) as well as by the gap-junction uncouplers 1-heptanol and carbenoxolone, indicating regulation by the InsP(3) pathway and dependence on gap-junctional coupling. Cells endogenously generated nitric oxide (NO), expressed NO synthase 1 (NOS 1) and connexin 43 (Cx 43). The nitric oxide NOS inhibitors NG-monomethyl-L-arginine (L-NMMA), N(G)-nitro-L-arginine methyl ester (L-NAME), 2-ethyl-2-thiopseudourea, and diphenylene iodonium as well as si-RNA-mediated down-regulation of NOS 1 synchronized [Ca(2+) ](i) oscillations between individual cells, whereas the NO-donors S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) as well as the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) were without effects. The synchronization of [Ca(2+) ](i) oscillations was due to an improvement of intracellular coupling since fluorescence recovery after photobleaching (FRAP) revealed increased reflow of fluorescent calcein into the bleached area in the presence of the NOS inhibitors DPI and L-NAME. In summary our data demonstrate that intracellular NO levels regulate synchronization of [Ca(2+) ](i) oscillations in undifferentiated ASCs by controlling gap-junctional coupling.  相似文献   

6.
The reaction of trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) and mitochondria was investigated through differential pulse polarography and fluorimetry. The nitrosyl complex undergoes one-electron reduction centered on the NO ligand site. The reaction between the mitochondrial reductor and trans-[Ru(NH(3))(4)P(OEt)(3)NO](3+) exhibits a second order specific rate constant calculated as k=2 x 10(1) M(-1) s(-1). The reduced species, trans-[Ru(NH(3))(4)P(OEt)(3)NO](2+), quickly releases NO, yielding trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+). The low toxicities of both trans-[Ru(NH(3))(4)P(OEt)(3)(NO)](2+) and trans-[Ru(NH(3))(4)P(OEt)(3)H(2)O](2+) and its ability to release NO after reductive activation in a biological medium make the nitrosyl compound a useful model of a hypotensive drug.  相似文献   

7.
Biological studies on [Fe(L)2](NO3).0.5H2O (1), [Fe(L)2][PF6] (2), [Co(L)2](NCS) (3), [Ni(HL)2]Cl2.3H2O (4) and Cu(L)(NO3) (5), where HL=C7H8N4S, pyridine-2-carbaldehyde thiosemicarbazone, have been carried out. The crystal structure of compound 3 has been solved. It consists of discrete monomeric cationic entities containing cobalt(III) ions in a distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogen atoms of each thiosemicarbazone molecule. The thiocyanate molecules act as counterions. The copper(II) and iron(III) complexes react with reduced glutathione and 2-mercaptoethanol. The reaction of compound 1 with the above thiols causes the reduction of the metal ion and bis(thiosemicarbazonato)iron(II) species are obtained. The redox activity, and in particular the reaction with cell thiols, seems to be related to the cytotoxicity of these complexes against Friend erithroleukemia cells and melanoma B16F10 cells.  相似文献   

8.
NO-donating ability of nitrosyl [Fe-S] complexes, namely, mononuclear dinitrosyl complexes of anionic type [Fe(S2O3)2(NO)2]-(I) and neutral [Fe2(SL1)2(NO)2] with L1=1H-1,2,4-triazole-3-yl (II); tetranitrosyl binuclear neutral complexes [Fe2(SL2)2(NO)4] with L2=5-amino-1,2,4-triazole-3-yl (III); 1-methyl-1H-tetrazole-5-yl (IV); imidazole-2-yl (V) and 1-methyl-imidazole-2-yl (VI) has been studied. In addition, Roussin's "red salt" Na2[Fe2S2(NO)4] x 8H2O (VII) and Na2[Fe(CN)5NO] x H2O (VIII) have been investigated. The method for research has been based on the formation of Hb-NO adduct upon the interaction of hemoglobin with NO generated by complexes I-VIII in aqueous solutions. Kinetics of NO formation was studied by registration of absorption spectra of the reaction systems containing Hb and the complex under study. For determination of HbNO concentration, the experimental absorption spectra were processed during the reaction using standard program MATHCAD to determine the contribution of individual Hb and HbNO spectra in each spectrum. The reaction rate constants were obtained by analyzing kinetic dependence of Hb interaction with NO donors under study. All kinetic dependences for complexes I-VI were shown to be described well in the frame of formalism of pseudo first-order reactions. The effective first-order rate constants for the studied reactions have been determined. As follows from the values of rate constants, the rate of interaction of sulfur-nitrosyl iron complexes (I-VI) with Hb is limited by the stage of NO release in the solution.  相似文献   

9.
Stability constants of the complexes formed in the reaction of [Pd(bpma)](2+) [bpma=bis(pyridin-2-ylmethyl)amine] with monodentate nitrogen and thioether ligands including uridine, MeUH, cytidine, MeC, EtGH, AcHis, AcHm, AcLys and AcMet were determined by potentiometric method. The coordination chemistry of [Pd(bpma)](2+) shows a significant similarity to that of [Pd(terpy)](2+), but it is different from [Pd(dien)](2+). The formation of hydroxo and dinuclear complexes is especially enhanced in the case of [Pd(bpma)](2+) and [Pd(terpy)](2+), but the affinity of palladium(II) ions for the coordination of thioether residues is reduced in the presence of pyridine nitrogen atoms. Stopped-flow kinetic measurements reveal that the substitution reactions of the thioether ligand AcMet are much faster than those of the N-donor cytidine. The presence of the two pyridyl residues significantly enhances the kinetic reactivity of [Pd(bpma)](2+) as compared to that of [Pd(dien)](2+). The Pd-S(thioether) bonded species can be important intermediates in multicomponent systems, but the equilibrium state is characterised by the formation of Pd-N bonded species. The complex [Pd(bpma)NO(3)]NO(3) has been prepared in solid state and its structure was elucidated by single crystal X-ray diffraction method.  相似文献   

10.
It has been suggested that nitric oxide (NO) may contribute to ischemia-induced cell injury. However, the mechanisms underlying NO toxicity have not yet been fully elucidated. In the present study, we investigated the effect of NO on the level of endoplasmic reticulum (ER) calcium stores, on ER Ca2+ pump activity, on protein synthesis, on concentrations of high-energy phosphates, and on gadd153 mRNA levels. Primary neuronal cells were exposed to the NO-donor (+/-)-S-Nitroso-N-acetylpenicillamine (SNAP) for 1 h, 2 h, 6 h or 24 h. The level of ER calcium stores was evaluated by measuring the increase in cytoplasmic calcium activity induced by exposing cells to thapsigargin, an irreversible inhibitor of ER Ca(2+)-ATPase; the activity of ER Ca(2+)-ATPase was determined by measuring a phosphorylated intermediate; SNAP-induced changes in gadd153 expression were evaluated by quantitative PCR; SNAP-induced changes in protein synthesis were investigated by measuring the incorporation of L-[4,5-3H]leucine into proteins, and changes in the levels of ATP, ADP, AMP were measured by HPLC. Exposing cells to SNAP for 1 h to 2 h induced a marked depletion of ER calcium stores through an inhibition of ER Ca(2+)-ATPase (to 58% of control), and a concentration-dependent suppression of protein synthesis which was reversed in the presence of hemoglobin, suggesting NO-related effects. ATP levels and adenylate energy charge were significantly decreased only when cells were exposed to the highest SNAP concentration for 6 h or 24 h, excluding significant effects of NO on the energy state of cells in the acute state, i.e. when ER calcium stores were already completely depleted and protein synthesis severely suppressed. In light of the regulatory role of ER calcium homeostasis in the control of protein synthesis, the results imply that the suppression of protein synthesis resulted from NO-induced inhibition of ER Ca(2+)-ATPase and depletion of ER calcium stores, and that NO-induced disturbances of energy metabolism are secondary to the effect of NO on ER calcium homeostasis. It is, therefore, concluded that ER calcium stores are a primary target of NO-toxicity.  相似文献   

11.
NO antagonizes hepatic stellate cell (HSC) contraction, although activated HSC in cirrhosis demonstrate impaired responses to NO. Decreased NO responses in activated HSC and mechanisms by which NO affects activated HSC remain incompletely understood. In normal rat HSC, the NO donor diethylamine NONOate (DEAN) significantly increased cGMP production and reduced serum-induced contraction by 25%. The guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) abolished 50% of DEAN effects, whereas the cGMP analog 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) reiterated half the observed DEAN response, suggesting both cGMP-dependent protein kinase G (PKG)-dependent and -independent mechanisms of NO-mediated antagonism of normal HSC contraction. However, NO donors did not increase cGMP production from in vivo activated HSC from bile duct-ligated rats and showed alterations in intracellular Ca(2+) accumulation suggesting defective cGMP-dependent effector pathways. The LX-2 cell line also demonstrated lack of cGMP generation in response to NO and a lack of effect of ODQ and 8-BrcGMP in modulating the NO response. However, cGMP-independent effects in response to NO were maintained in LX-2 and were associated with S-nitrosylation of proteins, an effect reiterated in primary HSC. Adenovirus-based overexpression of PKG significantly attenuated contraction of LX-2 by 25% in response to 8-BrcGMP. In summary, these studies demonstrate that NO affects HSC through cGMP-dependent and -independent pathways. The HSC activation process is associated with maintenance of cGMP-independent actions of NO but defects in cGMP-PKG-dependent NO signaling that are improved by PKG gene delivery in LX-2 cells. Activating targets downstream from NO-cGMP in activated HSC may represent a novel therapeutic target for portal hypertension.  相似文献   

12.
The 1 : 1 reactions of three neutral Co(III) oxidants, Co(acac)3, Co(NH3)3(NO2)3 and Co(acac)2(NH3)(NO2), with reduced parsley (Petroselinum crispum) [2Fe--2S] ferredoxin (which carries a substantial negative charge), have been studied at 25 degrees C, pH 8.0 (Tris/HCl), I0.10 (NaCl). Whereas it has previously been demonstrated that with Co(NH3)6+ as oxidant the reaction if completely blocked by redox-inactive Cr(NH3)63+, the neutral oxidants are only partially blocked by this same complex. The effects of three Cr(III) complexes, Cr(NH3)63+%, Cr(en)33+ and (en)2Cr . mu(OH,O2CCH3) . CR(en)24+ have been investigated. Kinetic data for the response of 3+, neutral, as well as 1--oxidants to the presence of 3+ (and 4+) Cr(III) complexes can now be rationalized in terms of a single functional site on the protein for electron transfer. Electrostatics have a significant influence on association at this site.  相似文献   

13.
New copper(I) complexes of the type [H(2)B(tz(NO2))(2)]Cu[PR(3)](2) (1-5), [H(2)B (tz(NO2))(2)]Cu[dppe] (6) and [H(2)B(tz(NO2))(2)]Cu[PR(3)] (7, 8) have been synthesized from the reaction of CuCl, potassium dihydrobis(3-nitro-1,2,4-triazol-1-yl)borate, K[H(2)B (tz(NO2))(2)], and mono- or bi-dentate tertiary phosphanes. The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR ((1)H and (31)P{(1)H}) spectroscopy in solution. Selected complexes 1, 3 and 5 have also been tested against a panel of several human tumor cell lines in order to evaluate their cytotoxic activity. Complexes 1 and 5 showed IC(50) values appreciably lower than those exhibited by cisplatin, the most used metal-based antitumor drug. It is worth noting that all three tested Cu(I) complexes appear to be particularly effective against A549 carcinoma cells that are resistant to cisplatin treatment.  相似文献   

14.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

15.
The objective of this study was to elucidate the origin of the nitric oxide-forming reactions from nitrite in the presence of the iron-N-methyl-D-glucamine dithiocarbamate complex ((MGD)(2)Fe(2+)). The (MGD)(2)Fe(2+) complex is commonly used in electron paramagnetic resonance (EPR) spectroscopic detection of NO both in vivo and in vitro. Although it is widely believed that only NO can react with (MGD)(2)Fe(2+) complex to form the (MGD)(2)Fe(2+).NO complex, a recent article reported that the (MGD)(2)Fe(2+) complex can react not only with NO, but also with nitrite to produce the characteristic triplet EPR signal of (MGD)(2)Fe(2+).NO (Hiramoto, K., Tomiyama, S., and Kikugawa, K. (1997) Free Radical Res. 27, 505-509). However, no detailed reaction mechanisms were given. Alternatively, nitrite is considered to be a spontaneous NO donor, especially at acidic pH values (Samouilov, A., Kuppusamy, P., and Zweier, J. L. (1998) Arch Biochem. Biophys. 357, 1-7). However, its production of nitric oxide at physiological pH is unclear. In this report, we demonstrate that the (MGD)(2)Fe(2+) complex and nitrite reacted to form NO as follows: 1) (MGD)(2)Fe(2).NO complex was produced at pH 7.4; 2) concomitantly, the (MGD)(3)Fe(3+) complex, which is the oxidized form of (MGD)(2)Fe(2+), was formed; 3) the rate of formation of the (MGD)(2)Fe(2+).NO complex was a function of the concentration of [Fe(2+)](2), [MGD], [H(+)] and [nitrite].  相似文献   

16.
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex.  相似文献   

17.
Preceding the onset of type 1 diabetes mellitus, pancreatic islets are infiltrated by macrophages secreting interleukin-1beta (IL-1beta) which induces beta-cell apoptosis and exerts inhibitory actions on islet beta-cell insulin secretion. IL-1beta seems to act chiefly through induction of nitric oxide (NO) synthesis. Hence, IL-1beta and NO have been implicated as key effector molecules in type 1 diabetes mellitus. In this paper, the influence of endogenously produced and exogenously delivered NO on the regulation of cell proliferation, cell viability and discrete parts of the stimulus-secretion coupling in insulin-secreting RINm5F cells was investigated. Because vitamin E may delay diabetes onset in animal models, we also investigated whether tocopherols may protect beta-cells from the suppressive actions of IL-1 and NO in vitro. To this end, the impact of NO on insulin secretory responses to activation of phospholipase C (by carbamylcholine), protein kinase C (by phorbol ester), adenylyl cyclase (by forskolin), and Ca(2+) influx through voltage-activated Ca(2+) channels (by K(+)-induced depolarization) was monitored in culture after treatment with IL-1beta or by co-incubation with the NO donor spermine-NONOate. It was found that cell proliferation, viability, insulin production and the stimulation of insulin release evoked by carbamylcholine and phorbol ester were impeded by IL-1beta or spermine-NONOate, whereas the hormone output by the other secretagogues was not altered by NO. Pretreatment with gamma-tocopherol (but not alpha-tocopherol) afforded a partial protection against the inhibitory effects of NO, whereas specifically inhibiting inducible NO synthase with N-nitro-L-arginine completely reversed the IL-1beta effects. In contrast, inhibiting guanylyl cyclase with ODQ (1H-[1,2, 4]oxadiazolo[4,3-alpha]-quinoxaline-1-one) or blocking low voltage-activated Ca(2+) channels with NiCl(2) failed to influence the actions of NO. In conclusion, our data show that NO inhibits growth and insulin secretion in RINm5F cells, and that gamma-tocopherol may partially prevent this. The results suggest that phospholipase C or protein kinase C may be targeted by NO. In contrast, cGMP or low voltage-activated Ca(2+) channels appear not to mediate the toxicity of NO in these cells. These adverse effects of NO on the beta-cell, and the protection by gamma-tocopherol, may be of importance for the development of the impaired insulin secretion characterizing type 1 diabetes mellitus, and offer possibilities for intervention in this process.  相似文献   

18.
Our hypothesis was that a large fraction of resting nitric oxide (NO) formation is driven by flow-mediated mechanisms in the intestinal microvasculature of the rat. NO-sensitive microelectrodes measured the in vivo perivascular NO concentration ([NO]). Flow was increased by forcing the arterioles to perfuse additional nearby arterioles; flow was decreased by lowering the mucosal metabolic rate by reducing sodium absorption. Resting periarteriolar [NO] of large arterioles (first order; 1A) and intermediate-sized arterioles (second order; 2A) was 337 +/- 20 and 318 +/- 21 nM. The resting [NO] was higher than the dissociation constant for the NO-guanylate cyclase reaction of vascular smooth muscle; therefore, resting [NO] should be a potent dilatory signal at rest. Over flow velocity and shear rate ranges of approximately 40-180% of control, periarteriolar [NO] changed 5-8% for each 10% change in flow velocity and shear rate. The relationship of [NO] to flow velocity and shear rate demonstrated that 60-80% of resting [NO] depended on flow-mediated mechanisms. Therefore, moment-to-moment regulation of [NO] at rest is an ongoing process that is highly dependent on flow-dependent mechanisms.  相似文献   

19.
Whereas previous studies suggest that tumor necrosis factor-alpha (TNF-alpha) induces cardiac contraction-relaxation deficits, the mechanisms remain unclear. Our recent studies have implicated cardiac-derived nitric oxide (NO). This study examined the detrimental and protective effects of NO donors S-nitroso-N-acetyl-penicillamine (SNAP) or (Z)-1- [N-(3-ammonio-propyl)-N-(n-propyl)amino]diazen-1-ium- 1,2diolate (PAPA/NO) on TNF-alpha-related changes in cardiac contractile function (Langendorff), cellular injury, and intracellular myocyte Ca(2+) concentration ([Ca(2+)](i)). Myocytes were incubated in the presence/absence of TNF-alpha (200-500 pg/ml x 10(5) cells) for 3 h; subsets of myocytes were incubated with one of several concentrations of SNAP or PAPA/NO (0.1, 0.3, 0.5, and 1.5 mM) for 15 min before TNF-alpha challenge. Supernatant creatine kinase (CK), cell viability (Trypan blue dye exclusion), and myocyte [Ca(2+)](i) (fura 2-acetoxymethyl ester) were measured. In parallel experiments, cardiac function (Langendorff) was examined after TNF-alpha challenge in the presence or absence of SNAP or PAPA/NO (0.1 and 1.5 mM). TNF-alpha in the absence of an NO donor impaired cardiac contraction and relaxation and produced cardiomyocyte injury. Pretreating perfused hearts or isolated cardiomyocytes with a low concentration of either SNAP or PAPA/NO decreased TNF-alpha-mediated cardiac injury and improved contractile dysfunction, whereas high concentrations of NO donor exacerbated TNF-alpha-mediated cardiac effects. These data provide one explanation for the conflicting reports of beneficial versus detrimental effects of NO in the face of inflammation and suggest that the effects of NO on organ function are concentration dependent; low concentrations of NO are cardioprotective, whereas high concentrations of NO are deleterious.  相似文献   

20.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(phen)(2)(dpta)](3+) and [Co(phen)(2)(amtp)](3+) (phen=1,10-phenanthroline, dpta=dipyrido-[3,2-a;2',3'-c]- thien-[3,4-c]azine, amtp=3-amino-1,2,4-triazino[5,6-f]1,10-phenanthroline) have been synthesized and characterized. The interaction of these complexes with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, these Co(III) complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365nm. The mechanism studies reveal that hydroxyl radical (OH()) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(phen)(2)(dpta)](3+) and superoxide anion radical (O(2)(-)) acts as the key role in the cleavage reaction of plasmid DNA by [Co(phen)(2)(amtp)](3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号