首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the enzymic activity of bilirubin oxidase when it is suspended as a lyophilized powder in a low-water system. The enzyme required buffer salts and a source of water to show activity. This study investigated the complete range of water thermodynamic activity (a(w)) by combining the use of salt hydrates and two-phase systems with concentrated solutes in the aqueous phase. When free water was added, activity reached a maximum at a defined water content, but this maximum increased with buffer content, suggesting that there was competition for water with the buffer salts from which the enzyme was lyophilized. Alternatively, a range of salt hydrates was used, each able to fix the water activity (a(w)) at a different value. By providing water to the organic solvent phase in this way, the dependency of enzyme activity upon a(w) was investigated and shown to be independent of buffer concentration. However, the optimum a(w) was uncertain because the available a(w) range for salt hydrates is < or = 0.90. Investigation of the remaining water activity range was made possible by using an a(w) depressor (sorbitol) to lower the a(w) of a two-phase system. The optimum a(w) for the bilirubin oxidase activity in this two-phase system was a(w) = 0.936, independent of buffer concentration. The study therefore confirmed the need to control the water 'available' to low-water systems and the dependence of enzyme activity on water thermodynamic activity (a(w)) not water content.  相似文献   

2.
The storage stability of bilirubin oxidase was studied in water-in-oil CTAB microemulsions with a chloroformrich continuous organic phase. The kinetics of the inactivation process were best described by a double exponential equation. Approximately half of enzymatic activity was lost during a "fast" phase with a half life of ca. 50 min, whereas the remaining activity was lost much more slowly (half life ca. 1000 min). Rates of inactivation were not affected significantly by variation of either solvent composition or concentration of water droplets, but inactivation was more rapid when droplet size was very small. Steady-state enzyme kinetics were studied at various stages in the inactivation process, and it was shown that inactivation occurred without change in the K(m) of the enzyme for bilirubin. Stability was also studied in a liquid/solid two-phase system; it was found that the inactivation process in this system; it was found that the inactivation process in this system was best described by a single exponential term. The rate was similar to the "fast" phase rate observed in the water-in-oil microemulsion system. Inactivation of the enzyme slow. Addition of the surfactant CTAB to the aqueous environment increased the rate of inactivation to levels comparable to those of the "slow" phase observed in water-in-oil microemulsions. (c) 1993 Wiley & Sons, Inc.  相似文献   

3.
Ester synthesis catalyzed by Candida cylindracea lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) was investigated in solid/liquid biphasic media containing the enzyme preparation and reactants without addition of organic solvents not participating in the reaction. Although the effects of water on enzyme kinetics have been abundantly studied in nearly anhydrous media, reactions in which water is produced have not been investigated. The effect of water produced by the reaction itself on the enzymatic activity was studied. The dispersion of water in a shaken, nearly anhydrous medium was shown to be responsible for the lack of activity of the enzyme. In contrast, when slowly shaken, the enzyme was fully activated by the water furnished as a product of the reaction. However, when experiments were performed in a two-phase aqueous/organic system with previously solubilized enzyme in water, the enzyme activity was increased by shaking and was of the same order of magnitude as in nearly anhydrous media. Under low water activity conditions, a powerful agitation can lead to slower reaction rate, because water, a product of esterification, is not retained in the microenvironment of the enzyme to activate it. The activation effect of water produced by the reaction was clearly shown using enzyme preparations shaken in an anhydrous medium and previously equilibrated at low water activities (aw = 0.13 and 0.69). This activation did not occur for an enzyme preparation equilibrated at high aw (0.89) or for a preparation gently shaken in a water-saturated medium. The lag time preceding activation of the enzyme increased with the extent of enzyme dehydration. The mass of the enzyme preparation was shown to be a parameter affecting the capacity of the lipase to produce enough water in its immediate environment. The lack of activity observed for a small quantity of enzyme was eliminated by addition of heat-denaturated lipase.  相似文献   

4.
A novel approach to enzymatic biotransformations in aqueous-organic two-phase systems was developed where the aqueous phase was contained within permeable polymeric capsules suspended in organic solvent. Microencapsulated beta-glucosidase, used as a model enzyme, was shown to retain its catalytic activity for a considerable time and was repeatedly used in batch experiments after recharging the microcapsules with solid glucose. The reaction conditions for the synthesis of hexyl beta-[D]-glucopyranoside were optimized with regard to the polymer composition of the microcapsules, pH, and the volume ratio of aqueous to organic phases. The potential for further improvement in the efficiency of the system was demonstrated by designing a bioreactor which incorporated units for product recovery and recycling of the organic solvent. Other advantages of the proposed methodology include facile control over the size and composition of the microcapsules, and mild reaction conditions during their preparation.  相似文献   

5.
The ability of an isolated isozyme of catechol 1,2-dioxygenase from Pseudomonas putida DSM 437 to function in a non-aqueous environment was investigated. The lyophilized enzyme is able to keep its catalytic function catalyzing the oxidation of catechol in n-hexane. Electron paramagnetic resonance (EPR) spectroscopy at liquid helium temperatures was applied to compare the properties of the non-heme iron of the enzyme in the organic solvent and in the aqueous solution. The catalytic performance of the enzyme in the organic solvent is correlated with the spectroscopic properties of the non-heme iron.  相似文献   

6.
Two microorganisms showing high omicron-transaminase activity (Klebsiella pneumoniae JS2F and Bacillus thuringiensis JS64) were screened by the enrichment method using (S)-alpha-methylbenzylamine (alpha-MBA) as a sole nitrogen source. Optimal carbon and nitrogen sources for enzyme induction and the properties of omicron-transaminases were investigated. omicron-Transaminase from B. thuringiensis JS64 was highly enantioselective (E = 75.3) for (S)-enantiomer of alpha-MBA and showed remarkable stability. However, omicron-transaminase showed severe product inhibition by acetophenone. An aqueous/organic two-phase system was introduced to overcome this problem. Through solvent screening, cyclohexanone and ethyl acetate were selected as the best organic phases. The acetophenone-extracting capacity of the solvent and the biocompatibility of the solvent to the cell were important determinants in the reaction rate at high concentrations of alpha-MBA. The reaction rate of omicron-transamination was strongly influenced by the volume ratio of organic phase to aqueous phase as well as agitation speed in the biphasic mixture. Using the optimal volume ratio (Vorg:Vaq = 1:4) in the biphasic system with cyclohexanone, the reaction rate of omicron-transaminase under vigorous mixing conditions increased ninefold compared with that in the monophasic aqueous system. At the same optimal conditions, using whole cells, 500 mM alpha-MBA could be resolved successfully to above 95% enantiomeric excess of (R)-alpha-MBA with ca. 51% conversion. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 348-358, 1997.  相似文献   

7.
Biofiltration of air polluted by volatile organic compounds is now recognized by the industrial and research communities as an effective and viable alternative to standard environmental technologies. Whereas many studies have focused on solid/liquid/gas biofilters, there have been fewer reports on waste air treatment using other biological processes, especially in a solid/gas biofilter. In this study, a comparison was made of the hydrolysis of halogenated compounds (such as 1-chlorobutane) by lyophilized Rhodococcus erythropolis cells in a novel solid/gas biofilter and in the aqueous phase. We first determined the culture conditions for the production of R. erythropolis cells with a strong dehalogenase activity. Four different media were studied and the amount of 1-chlorobutane was optimized. Next, we report the possibility to use R. erythropolis cells in a solid/gas biofilter in order to transform halogenated compounds in corresponding alcohols. The effect of experimental parameters (total flow into the biofilter, thermodynamic activity of the substrates, temperature, carbon chain length of halogenated substrates) on the activity and stability of lyophilized cells in the gas phase was determined. A critical water thermodynamic activity (a(w)) of 0.4 is necessary for the enzyme to become active and optimal dehalogenase activity for the lyophilized cells is obtained for an a(w) of 0.9. A temperature of reaction of 40 degrees C represents the best compromise between stability and activity. Activation energy of the reaction was determined and found equal to 59.5 KJ/mol. The pH effect on the dehalogenase activity of R. erythropolis cells was also studied in the gas phase and in the aqueous phase. It was observed that pH 9.0 provided the best activity in both systems. We observed that in the aqueous phase R. erythropolis cells were less sensitive to the variation in pH than R. erythropolis cells in the gas phase. Finally, the addition of volatile Lewis base (triethylamine) in the gaseous phase and the action of the lysozyme in order to permeabilize the cells was found to be highly beneficial to the effectiveness of the biofilter.  相似文献   

8.
The kinetics of butyl butyrate synthesis by a lipase from Mucor miehei in different types of organic media were investigated. The three systems studied were a microaqueous medium containing enzyme in suspension in hexane, a water-hexane two-phase system, and reverse micelles. The synthesis of butyl butyrate was possible in all cases because of a favorable partition of the ester into the organic solvent. A sufficient stirring rate was necessary to achieve good reaction rates in the case of the liquid-liquid biphasic medium. The effect of water content was different according to the type of system used. The dependence of reaction rate and of conversion yield on enzyme and substrate concentrations was also investigated. From an applied point of view, the best performances were obtained with either microaqueous or liquid-liquid two-phase systems. The use of reverse micelles can be advocated only in particular conditions, such as low enzyme concentration, compatible with the specific constraints it involves.  相似文献   

9.
Enzymatic hydrolysis conducted in a medium composed of solely substrate is considered to resolve racemic ketoprofen esters. In a system composed of two components, the pure liquid substrate (organic phase) and water (aqueous phase), hydrolysis products can be efficiently removed from the reaction mixtures. Accordingly, in this study we designed a solvent-free two-phase system for the enantioselective enzymatic hydrolysis of ketoprofen esters. In order to further optimize this system, the influences of various factors, such as the pH of the aqueous phase, temperature, enzyme content, and the alcohol chain length of esters, were examined on conversion and enantiomeric excess. 1N NaHCO3 was identified as the most efficient aqueous phase for the extraction of ketoprofen. Changes in the amount of enzyme did not significantly affect the maximum conversion or the enantiomeric excess. On the other hand, ketoprofen esters with shorter alcohol chains displayed higher initial reaction rates and conversions in solventless media. In the case of ketoprofen propyl ester, for example, the productivity of the solvent-free two-phase system was about 10–100 times higher than that obtained to date for ketoprofen esterification with alcohols in organic solvents. The enantioselectivities obtained in solvent-free media were similar to those obtained for the enantioselective esterification of ketoprofen in organic solvents.  相似文献   

10.
The aim of this work is to find the best conditions to isolate lipase from a solid culture medium of Aspergillus niger NRRL3 strains using aqueous two-phase systems formed with polyethylene glycol and potassium phosphate or polyethylene glycol and sodium citrate. We studied the partitioning of a commercial lyophilizate from A. niger. Also, the lipase enzymatic activity was studied in all the phases of the systems and the results indicate that citrate anion increases lipase activity. An analysis by fluorescence spectroscopy of the interaction between lipase and the bottom and top phases of the systems shows that the protein tryptophan-environments are modified by the presence of PEG and salts. Separation of the enzyme from the rest of the proteins that make up the lyophilized was achieved with good yield and separation factor by ATPS formed by PEG 1000/Pi at pH 7, PEG 2000/Ci at pH 5.2 and PEG 4000/Ci at pH 5.2. The above mentioned systems were used in order to isolate extracellular lipase from a strain of A. niger in submerged culture and solid culture. The best system for solid culture, with high purification factor (30.50), is the PEG 4000/Ci at pH 5.2. The enzyme was produced in a solid culture medium whose production is simple and recovered in a phase poor in polymer, bottom phase. An additional advantage is that the citrate produces less pollution than the phosphate. This methodology could be used as a first step for the isolation of the extracellular lipase from A. niger.  相似文献   

11.
Catalytic activities of alpha-chymotrypsin and subtilisin Carlsberg in various hydrous organic solvents were measured as a function of how the enzyme suspension had been prepared. In one method, lyophilized enzyme was directly suspended in the solvent containing 1% water. In another, the enzyme was precipitated from its aqueous solution by a 100-fold dilution with an anhydrous solvent. In most cases, the reaction rate in a given nonaqueous enzymatic system strongly (up to an order of magnitude) depended on the mode of enzyme preparation. The magnitude of this dependence was markedly affected by the nature of the solvent and enzyme. A mechanistic hypothesis proposed to explain the observed dependencies was verified in additional experiments in which the water contents and enzyme history were further varied.  相似文献   

12.
Advantages of performing penicillin G amidase catalysed synthesis of ampicillin and cephalexin by enzymatic acyl transfer to the β-lactam antibiotic nuclei in a highly condensed system using mainly undissolved substrates, with no apparent aqueous liquid phase, were demonstrated. It was shown that synthesis can be performed in the absence of a liquid phase formed by water or an organic co-solvent. This highly condensed system is formed by a liquid phase given by one of the reactant, the phenylglycine methyl ester (PGM), that remains liquid in these operative conditions and the partially dissolved β-lactam nucleus. Operating in such highly condensed system, the water that causes the hydrolysis of PGM is limited to the water hydrating the support on which the enzyme is covalently immobilised. In this way the reaction system is maintained at a controlled degree of hydration.

In the present work the reaction system was modulated by eliminating the solvent (aqueous or aqueous/organic), reducing the amount of water to the minimum for the biocatalytic activity and using PGM as solvent and reagent at the same time. The synthesis was conducted with equimolar amounts of PGM and the β-lactam nucleus, with a reduced hydrolysis of the activated acyl donor. We have also studied a simple and efficient method for the workup of the reaction where the unreacted reagents can be recovered after selective filtration and precipitation.  相似文献   


13.
The potentials of using organic reaction media in biotechnological conversions have already been demonstrated in several experimental studies. Examples of possible advantages are: possibility of higher substrate and/or product concentrations, favorable shift of reaction equilibria, reduced substrate and/or product inhibition, and facilitated product recovery. Especially water/organic solvent two-phase systems seem to possess several of these advantages. The solvent type will highly affect kinetics and stability of the (immobilized) biocatalyst, solubility and partitioning of reactants/products, and product recovery. Therefore the solvent choice can have a large influence on the economics of the two-liquid-phase biocatalytic process. Immobilization of the biocatalyst may be useful to provide protection against denaturating solvent effects. The polarity of the employed support material will also be decisive for the partitioning of substrates and products among the various phases.

A classification of biphasic systems, which is based on the possible types of theoretical concentration profiles and aqueous phase configurations, is discussed. Reversed micelles and aqueous two-liquid-phase systems can be considered as special cases. The design of two-liquid-phase bioreactors is dependent on the state of the biocatalyst, free or immobilized, and on the necessity for emulsification of one of the two liquid phases in the other. Many mass-transfer resistances, e.g. across the liquid/liquid interface, in the aqueous phase, across the liquid/solid interface, and in the biocatalyst phase, can limit the overall reaction rate. The epoxidation of alkenes in water/solvent two-phase systems is discussed to give an example of the scope of biotechnological processes that is obtained by using organic media. Finally, a design calculation of a packed-bed organic-liquid-phasel immobilized-biocatalyst reactor for the epoxidation of propene is given to illustrate some of the above aspects.  相似文献   


14.
Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservior to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer [>50% (v/v)] and Ca alginate gel (<50%) worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient. Offprint requests to: F. Monot  相似文献   

16.
Changes in solvent type were shown to yield significant improvement of enzyme enantioselectivity. The resolution of 3-methyl-2-butanol catalyzed by Candida antarctica lipase B, CALB, was studied in eight liquid organic solvents and supercritical carbon dioxide, SCCO(2). Studies of the temperature dependence of the enantiomeric ratio allowed determination of the enthalpic (Delta(R-S)Delta H(++)) as well as the entropic (Delta(R-S)Delta S(++)) contribution to the overall enantioselectivity (Delta(R-S)Delta G(++)= -RTlnE). A correlation of the enantiomeric ratio, E, to the van der Waals volume of the solvent molecules was observed and suggested as one of the parameters that govern solvent effects on enzyme catalysis. An enthalpy-entropy compensation relationship was indicated between the studied liquid solvents. The enzymatic mechanism must be of a somewhat different nature in SCCO(2), as this reaction in this medium did not follow the enthalpy-entropy compensation relation.  相似文献   

17.
Integration of bioconversion and the first step(s) of down stream processing can be used as a means to increase the productivity of bioprocesses. This integration also gives the possibility to run the bioconversion in a continuous mode. We demonstrate the use of an aqueous two-phase system in combination with ultrafiltration to accomplish this. Conversion of native starch to glucose by alpha-amylase and glucoamylase was carried out in an aqueous two-phase system in connection with a membrane filtration unit. In this way, a continuous stream of glucose in buffer solution was obtained; the phase-forming polymers as well as the starch-degrading enzymes were recycled, and clogging of the ultrafiltration membrane was avoided. The process was carried out continuously in a mixer-settler reactor for a period of 8 days. The enzyme activities in the top and bottom phases and in the mixing chamber were monitored intermittently throughout the experiment. The optimum pH, temperature, and ionic strength for the activity of the enzyme mixture were determined. The settling time of phase systems containing varying amounts of PEG, crude dextran, and solid starch was studied. The activity and stability of enzyme mixtures was studied both in buffer medium and in the medium containing the polymers. The enzymes were found to be more active and stable in medium containing polymers than in the buffer solutions.  相似文献   

18.
The direct one-step synthesis of L-phenylalanine methyl ester in an organic-aqueous biphasic system using phenylalanine ammonia lyase (E.C.4.3.1.5, PAL) containing Rhodotorula glutinis yeast whole cells was reported earlier. We report here further optimization of this biotransformation using isolated PAL, when the lyophilized enzyme is treated with different water miscible and water immiscible organic solvents. Use of isolated PAL enzyme is advantageous in overcoming diffusion barriers encountered when using PAL containing R.glutinis whole cells, and resulted in increased product yield due to better interaction of enzyme with the substrate. Among the water miscible solvents, ethanol treated and methanol-treated enzymes supported maximum PAL forward and reverse activities; respectively. In the water immiscible solvents category, heptane-treated enzyme exhibited maximal activity for both PAL forward and reverse reactions. PAL activity obtained with enzyme specimens treated with methanol, ethanol, and heptane varied in the range of 91–99% of that observed in aqueous buffer medium for the forward reaction; and 89–95% for the reverse reaction. n-butanol,acetone, and benzene were found to have a inhibitory effect on PAL enzyme, in that, it resulted in only 31–33% activity of that obtained with aqueous solution. Raman spectroscopy was used to monitor amide I and II bands which are sensitive to changes in the secondary structure of proteins. No changes in structure could be detected from the analyses of AI and AII bands of PAL spectra. This data obtained for PAL, a tetramer, could be significant in predicting how solvent interactions affect the structure and function of multimeric proteins and enzymes in nonaqueous media.  相似文献   

19.
The stability of biocatalysis in systems containing organic solvents is reviewed. Among the examples presented are homogeneous mixtures of water and water-miscible organic solvents, aqueous/organic two-phase systems, solid biocatalysts suspended in organic solvents, enzymes in reverse micelles and modified enzymes soluble in water immiscible solvents. The stability of biocatalysts in organic solvents depends very much on the conditions. The hydrophobicity or the polarity of the solvent is clearly of great importance. More hydrophobic solvents (higher log P values) are less harmful to enzymes than less hydrophobic solvents. The water content of the system is a very important parameter. Some water is essential for enzymatic activity; however, the stability of enzymes decreases with increasing water content. Mechanisms of enzyme inactivation are discussed.  相似文献   

20.
The catalytic activity of β-hydroxysteroid dehydrogenase on 3β- or 17β-hydroxysteroids was studied when the reaction was carried out in a two-phase system where the enzyme and the cofactor were in the water phase and the substrate was predominantly in the organic phase.With some organic solvents the enzyme displayed its activity over a long period. Large amounts of steroids could be transformed in small volumes, using low enzyme concentrations.The kinetics of the reaction in the two-phase system as a function of substrate, enzyme concentrations, and pH as well as the equilibrium position were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号