首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starvation for carbon and energy sources accelerated the biotransformation of the anion-active surfactant dihexyl sulfosuccinate (DHS) byComamonas terrigena cells. Cloramphenicol (Cm) added at different time intervals to non-starved cells inhibited the DHS transformation. The largest difference between cells treated and non-treated by Cm was observed for a 16-h-starvation period. Protein synthesisde novo during starvation enhanced the DHS biotransformation efficiency. A partial transformation of DHS in the presence of Cm indicated the constitutive character of enzymes involved in primary DHS biodegradation.  相似文献   

2.
Surfactants were used to permeabilize cells of Pseudomonas putida KT2440 so as to maximize retention of the arginine deiminase (ADI) activity within the treated cells. The surfactants cetyltrimethylammoniumbromide (CTAB), sodium dodecyl sulfate (SDS) and Triton X100 were tested separately. Statistical models were developed for the effects on the ADI activity of the following factors: the concentration of the surfactant, the length of the treatment period and the concentration of the cells. For all surfactants, the concentration of cells was the most significant factor in influencing permeabilization. All permeabilization treatments used mild conditions (pH 7, 37 °C). The permeabilized cells were immobilized in alginate beads for the biotransformation of arginine to citrulline. The optimal conditions for immobilization and biotransformation were as follows: 2% (w/v, g/100 mL) sodium alginate, 100 g/L of treated cells, 40 mM arginine, pH 6.0, a temperature of 35 °C and an agitation speed of 150 rpm. The immobilized biocatalyst retained nearly 90% of its initial activity after nine cycles of repeated use in batch operations. In contrast, the freely suspended cells were barely active after the second use cycle.  相似文献   

3.
We studied the effect of a heterogeneous environment on the stereoselectivity of transformation of racemic phenylglycine nitrile. Immobilized biocatalysts were prepared by adhesion of Pseudomonas fluorescens C2 cells on carbon-containing supports and covalent crosslinking of nitrile hydratase and amidase of Rhodococcus rhodochrous 4–1 to activated chitosan as well as by the method of cross-linked aggregates. At a reaction duration of 20 h, the ratio of phenylglycine stereoisomers changes depending on the presence of support in medium. The highest optical purity of the product (enantiomeric excess of L-phenylglycine solution, 98%) is achieved when enzyme aggregates of nitrile hydratase and amidase cross-linked with 0.1% glutaraldehyde are used as a biocatalyst.  相似文献   

4.
Three enzymes, cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], d-glucose oxidase (β-d-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) and peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) immobilized on glass beads, have been incubated with lignocellulose. Fungal peroxidases from Trametes versicolor and Inonotus radiatus when mixed with cellulase and d-glucose oxidase were able to liberate phenolic compounds and d-glucose from lignocellulose. Three lignin monomers were identified. When the immobilized enzymes were incubated individually with lignocellulose they did not degrade lignin.  相似文献   

5.
Immobilized cells of Actinoplanes teichomyceticus ATCC 31121 were used to selectively cleave the acyl group of A40926 yielding the deacylated form of the molecule. The feasibility of this particular biotransformation in a series of three perfectly mixed airlift bioreactors with immobilized cells was examined. A continuously operated airlift cascade was designed using a model for a series of reactors with immobilized biocatalyst beads obeying Michaelis–Menten kinetics. In independent experimental runs the cascade bioreactor system was operated continuously for 56 days with an overall conversion of 99%. Model estimates for reactor volumes and relative conversions were found to be in a good agreement with the experimental results.  相似文献   

6.
7.
In this study, Nocardia iowensis was used to transform oleanolic acid (OA) into oleanane derivatives. The first derivative, which was found after 24 h of cultivation, was the known and already described OA methyl ester. After 1 week, two other derivatives (oleanonic acid methyl ester and an unknown metabolite) were identified as new products of a biotransformation by N. iowensis. These oleanane metabolites were characterized by HPLC, HPLC‐ESI‐MS, and HPLC‐1H NMR spectroscopy. The biotransformation was performed by suspended and immobilized cells (ICs) of N. iowensis. Cells immobilized in alginate beads were used in order to prepare a continuous process. The substrate uptake of free and ICs was similar, whereas the peak area of OA methyl ester of the ICs was only about 10% of the native cells. However, the final product (oleanonic acid methyl ester) concentrations were similar in both approaches, whereas the unknown metabolite 3 was only detected transiently in the medium of ICs. Based on these results, a new biosynthetic pathway for the biotechnological production of oleanonic acid methyl ester is proposed.  相似文献   

8.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

9.
The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.  相似文献   

10.
Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine has been evaluated using immobilized pyruvate decarboxylase (PDC) from Candida utilis. PDC immobilized in spherical polyacrylamide beads was found to have a longer half-life compared with free enzyme. In a batch process, the immobilized PDC generally produced lower L-PAC than free enzyme at the same concentrations of substrates due to increased by-products acetaldehyde and acetoin and reduced benzaldehyde uptake. With immobilized PDC, L-PAC formation occurred at higher benzaldehyde concentrations (up to 300 mM) with the highest L-PAC concentration being 181 mM (27.1 g/L). For a continuous process, when 50 mM benzaldehyde and 100 mM sodium pyruvate were fed into a packed-bed reactor at 4 degrees C and pH 6.5, a productivity of 3.7 mM/h (0.56 g/L . h) L-PAC was obtained at an average concentration of 30 mM (4.5 g/L). The half-life of immobilized PDC reactor was 32 days. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
The effects of important production variables on the biotransformation of sucrose by immobilized cells of Phaffia rhodozyma were investigated. Cell concentration had negative effect on the maximum concentration of neokestose and the optimal concentration was 16?g/l (calculated by dry weight). The concentration of sucrose had a positive effect on the maximum concentration of neokestose within 1.170?mol/l. Elevating the reaction temperature increased the reaction rate but decreased the maximum concentration of neokestose. Sugar cane juice could be used as an inexpensive substrate for neokestose production. Additionally, a 30-d continuous neokestose production was found feasible in a packed bed reactor, indicating that the cell immobilization with chitosan-coated alginate has the potential for industrial production.  相似文献   

12.
Li L  Wang J  Zhou J  Yang F  Jin C  Qu Y  Li A  Zhang L 《Bioresource technology》2008,99(15):6908-6916
Functionalized polypyrrole (PPy) composites were prepared by incorporation of a model redox mediator, anthraquinonedisulphonate (AQDS), as doping anion during the electropolymerization of pyrrole (Py) monomer on active carbon felt (ACF) electrode. Then, the resulting composite, ACF/PPy/AQDS as a novel immobilized redox mediator for catalyzing anaerobic biotransformation of the model nitroaromatic compounds (NACs), such as nitrobenzene (NB), 2,4- and 2,6-dinitrotoluene (DNT), were investigated in detail. The results showed that ACF/PPy/AQDS exhibited good catalytic activity and stability, and its addition effectively accelerated the NACs anaerobic reduction to the corresponding amino compounds. In order to estimate the relationship between community dynamics and the function of immobilized redox mediator, a combined method based on fingerprints (ribosomal intergenic spacer analysis, RISA) and 16S rRNA gene sequencing was used. The results indicated that the existence of ACF/PPy/AQDS made the potent AQDS-reducing bacteria keeping predominant in the catalytic systems. Based on the results above, it can be concluded that this novel immobilized redox mediator is feasible and potentially useful to enhance NACs anaerobic reduction.  相似文献   

13.
14.
Continuous cultures of immobilized Streptomyces kasugaensis, a kasugamycin producer, were carried out on Celite beads. When using a prototype separator for immobilized-cell separation and recycling, the continuous operation could not be sustained for an extended period as a result of an excessive loss of immobilized cells caused by the poor performance of the separator. Accordingly, the immobilized-cell separator was revised to provide better immobilized-cell settling and thus recycling into the reactor. In a subsequent culture using the revised separator, a stable operation was maintained for over 820 h with a high kasugamycin productivity. The kasugamycin productivity ranged from 9.8 to 16.1 mg/L/h, which was about 14- to 23-fold higher than that in a batch suspended-cell culture. When the original feeding medium concentration was doubled at the end of the continuous culture, the productivity became severely impaired for several reasons, which will be discussed. An excessive formation of free cells and loss of immobilized cells through the separator were also observed.  相似文献   

15.
A derivative of fuculose-1-phosphate aldolase, immobilized with high loading on glyoxal–agarose gels, has been characterized and evaluated as a biocatalyst for an aldol addition reaction. The reaction of the solid biocatalyst was diffusion-controlled for conversion of its natural substrate. Nevertheless, when catalyzing the synthesis of a biologically active aminopolyol, the lower reaction rate with non-natural substrates led to a process controlled by the intrinsic enzyme kinetics. The resulting biocatalyst has high synthetic specific activity and has been successfully used in batch synthesis reactions with high conversion. In addition, the immobilized aldolase has been employed in fed-batch synthesis, increasing the selectivity of the reaction and obtaining high conversion (88%).  相似文献   

16.
17.
Isomaltulose production using immobilized cells   总被引:4,自引:0,他引:4  
Three strains of Erwinia rhapontici especially suitable for use in the form of nongrowing immobilized cells were selected by screening strains of cells for high activity and operational stability in an immobilized form. Immobilization in calcium alginate gel pellets was easily the best method of immobilizing E. rhapontici. Much greater operational stabilities were obtained than when other immobilization methods were used. Conditions of operation which optimize the activity, stability, and yield and the ease of operation of the immobilized cell columns working in a steady state are described. These include the effects of substrate concentration, diffusional restrictions and water activity, the concentration of cells immobilized, and the type of reactor used. Thus, the immobilized cells produce about 1500 times their own weight of isomaltulose during one half-life of use (ca. 1 year). Loss of activity was most closely correlated with the volume of substrate processed and so presumably is due to the presence of low concentrations of a cummulative inhibitor in the substrate. Methods for regenerating the activity of the immobilized cells by the periodic administration of nutrients, of forming isomaltulose by continuously supplying nutrients to growing immobilized cells, and of crystallizing isomaltulose from the column eluate are also described.  相似文献   

18.
Summary Oxygen supply is a critical point in technical processes when aerobic cells are used in immobilized preparations. This report concerns the use of hemoglobin or emulsions of perfluorochemicals (completely fluorinated organic compounds) to carry oxygen to immobilized cells. Both methods work well and do not seem to harm the cells. The perfluorochemical method of improving oxygen supply showed a higher operational stability than the hemoglobin method.Part of this work was presented at the Biochemical Engineering meeting in St. Barbara, CA. USA, 18–24 Sept. 1982  相似文献   

19.
Mobil Crystalline Material (MCM-41) can be used for the immobilization of enzymes and the investigation of electron transfer in biological systems. Electron transfer between MCM-41 with aluminum (Al-MCM-41) and cytochrome P-450 (CYP2B4) was observed using electron paramagnetic resonance (EPR). When CYP2B4 was immobilized by adsorption, it catalyzed the conversion of aniline to p-aminophenol. The electron transfer was evidenced when the signal with a g value (also called g-factor or spectroscopic manifestation of the magnetic moment) of 1.98 increased at the same time that the signal with a g value 2.24 decreased due to the addition of NADPH to CYP2B4 immobilized on Al-MCM-41, indicating that FeIII was reduced to FeII. Therefore, it is possible that Al-MCM-41 participates in the electron transfer process in biological systems.  相似文献   

20.
Summary It is feasible to produce ethanol by continuous fermentation of molasses-stillage medium, without any supplementation, employing calcium alginate immobilized cells of Saccharomyces cerevisiae. High flow rates generated high values for the productivity; however, the percent substrate conversion decreases with the dilution rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号