首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the relationship between the cardiac and skeletal muscle gene programs, the current study employs the regulatory (phosphorylatable) myosin light chain (MLC-2) as a model system. Northern blotting, primer extension, and RNase protection studies documented the high level expression of the cardiac MLC-2 mRNA in both mouse cardiac and slow skeletal muscle (soleus). Transgenic mouse lines harboring a 2100- or a 250-base pair rat cardiac MLC-2 promoter/luciferase fusion gene were generated, demonstrating high levels of luciferase activity in cardiac muscle, and only background luminescence in slow skeletal muscle and non-muscle tissues. As assessed by in situ hybridization, immunofluorescence, and luminescence assays of luciferase reporter activity in various regions of the heart, both the endogenous MLC-2 gene and the MLC-2 luciferase fusion gene were expressed exclusively in the ventricular compartment, with expression in the atrium at background levels. Point mutations within the conserved regulatory sites HF-1a and HF-1b significantly cripple ventricular muscle specificity, while mutation of the single E-box site was without effect, suggesting that ventricular muscle-specific expression occurs through an E-box-independent pathway. This study provides direct evidence that the cis regulatory sequences in the cardiac/slow twitch MLC-2 gene which confer cardiac and skeletal muscle-specific expression can be clearly segregated, suggesting that distinct regulatory programs may have evolved to control the tissue-specific expression of this single contractile protein gene in cardiac and skeletal muscle.  相似文献   

2.
3.
The present study characterized the structure, organization, and expression of the rat cardiac myosin light chain (MLC) -2 gene. The rat cardiac MLC-2 gene has seven exons which display complete conservation with the exon structure of the rat fast twitch skeletal MLC-2 gene. A 250-base pair (bp) sequence of the 5'-flanking region contains CArG motifs and additional cis elements, each greater than 10 bp in length, which were conserved in sequence and relative position with the chick cardiac MLC-2 gene. A series of MLC-2/luciferase fusion genes consisting of nested 5' deletions of the MLC-2 5'-flanking region were constructed and transfected into primary neonatal rat myocardial cells and a non-myocardial cell line (CV-1), demonstrating that this 250 bp of the MLC-2 5'-flanking region was sufficient to confer cardiac specific expression on a luciferase reporter gene. This study suggests the presence of important proximal regulatory sequences in the MLC-2 5'-flanking region which are capable of directing the cardiac specific expression of the rat cardiac myosin light chain-2 gene.  相似文献   

4.
5.
6.
7.
8.
The cardiac myosin light-chain 2v (MLC-2v) gene has served as a model system to identify the pathways which restrict the expression of cardiac muscle genes to particular chambers of the heart during cardiogenesis. To identify the critical cis regulatory elements which mediate ventricular chamber-specific expression of the MLC-2v gene in the in vivo context, a series of transgenic mice which harbor mutations in putative MLC-2 cis regulatory elements in a 250-bp MLC-2-luciferase fusion gene which is expressed in a ventricular chamber-specific fashion in transgenic mice were generated. These studies demonstrate that both components of HF-1 (HF-1a and HF-1b/MEF-2) are required to maintain ventricular chamber-specific expression and function as positive regulatory elements. Mutations in another conserved element (HF-2) are without statistically significant effect on ventricular chamber expression. Transgenics harboring mutations in the E-box site also displayed significant upregulation of reporter activity in the soleus, gastrocnemius, and uterus, with a borderline effect on expression in liver. Mutations in another conserved element (HF-3) result in a marked (> 75-fold) upregulation of the luciferase reporter activity in the soleus muscle of multiple independent or transgenic founders. Since the HF-3 mutations appeared to have only a marginal effect on luciferase reporter activity in liver tissue, HF-3 appears to function as a novel negative regulatory element to primarily suppress expression in muscle tissues. Thus, a combination of positive (HF-1a/HF-1b) and negative (E-box and HF-3) regulatory elements appear to be required to maintain ventricular chamber-specific expression in the in vivo context.  相似文献   

9.
Signaling via the Ras pathway involves sequential activation of Ras, Raf-1, mitogen-activated protein kinase kinase (MKK), and the extracellular signal-regulated (ERK) group of mitogen-activated protein (MAP) kinases. Expression from the c-Fos, atrial natriuretic factor (ANF), and myosin light chain-2 (MLC-2) promoters during phenylephrine-induced cardiac muscle cell hypertrophy requires activation of this pathway. Furthermore, constitutively active Ras or Raf-1 can mimic the action of phenylephrine in inducing expression from these promoters. In this study, we tested whether constitutively active MKK, the molecule immediately downstream of Raf, was sufficient to induce expression. Expression of constitutively active MKK induce ERK2 kinase activity and caused expression from the c-Fos promoter, but did not significantly activate expression of reporter genes under the control of either the ANF or MLC-2 promoters. Expression of CL100, a phosphatase that inactivates ERKs, prevented expression from all of the promoters. Taken together, these data suggest that ERK activation is required for expression from the Fos, ANF, and MLC-2 promoters but MKK and ERK activation is sufficient for expression only from the Fos promoter. Constitutively active MKK synergized with phenylephrine to increase expression from a c-Fos- or an AP1-driven reporter. However, active MKK inhibited phenylephrine- and Raf-1-induced expression from the ANF and MLC-2 promoters. A DNA sequence in the MLC-2 promoter that is a target for inhibition by active MKK, but not CL100, was mapped to a previously characterized DNA element (HF1) that is responsible for cardiac specificity. Thus, activation of cardiac gene expression during phenylephrine-induced hypertrophy requires ERK activation but constitutive activation by MKK can inhibit expression by targeting a DNA element that controls the cardiac specificity of gene expression.  相似文献   

10.
11.
12.
It has been shown recently that alpha-adrenergic agonists can stimulate atrial natriuretic factor (ANF) expression in ventricular cardiac myocytes; however, little is known about the intracellular signals mediating this activation. The present study focused on the potential roles of calcium-regulated kinases and calcium influx in the alpha-adrenergic stimulation of ANF gene expression in ventricular myocardial cell cultures. Myocardial cells maintained for 48 h in serum-free medium supplemented with phenylephrine (PE) possessed up to 15-fold higher levels of ANF peptide and ANF mRNA than control cells. The removal of PE, or the addition of nifedipine, resulted in a rapid decline in ANF expression, suggesting that the sustained elevation of some intracellular messenger (e.g. calcium and/or phospholipid hydrolysis products) was required for the adrenergic response. The calcium channel agonist BAY K 8644 was capable of increasing ANF expression in a nifedipine-sensitive manner; however, unlike PE, it did not stimulate phosphoinositide hydrolysis. The protein kinase C inhibitor, H7, caused an approximate 75% reduction in PE-stimulated ANF expression, but had no effect on BAY K-stimulated expression. W7, a calcium/calmodulin inhibitor, completely blocked the effects of both PE and BAY K 8644. The addition of either H7 or W7 24 h after the PE addition resulted in a decline of ANF expression. These results indicate that alpha-adrenergic agonists augment ANF gene expression through at least two pathways, one that is H7-sensitive, perhaps involving the sustained activation of protein kinase C, and the other that is W7-sensitive, perhaps involving the sustained activation of calmodulin-regulated kinases. Further, it appears that BAY K 8644-mediated increases in ANF expression are independent of protein kinase C activation and dependent on calmodulin-regulated events.  相似文献   

13.
14.
15.
16.
17.
18.
19.
We have produced transgenic mice that express the prokaryotic marker protein chloramphenicol acetyltransferase under the control of regulatory sequences derived from the rat atrial natriuretic factor gene. The transgene, which contains 2.4 kilobases of the rat atrial natriuretic factor gene regulatory region, was found to direct 4000-fold more chloramphenicol acetyltransferase expression in adult atria than in ventricles. Low-level activity was also detected in the hypothalamus, demonstrating that these sequences contain the signals necessary for cardiac and central nervous system expression of the hormone atrial natriuretic factor. Developmental analyses showed early, high-level transgene expression in fetal atrial and ventricular tissues but marked reduction of ventricular transgene expression following birth. Further, the developmental expression patterns of the endogenous murine atrial natriuretic factor gene and rat transgene were found to be quite distinct. Although both the rat and mouse atrial natriuretic factor genes are activated early in embryogenesis, perinatal ventricular expression appears to differ in these two rodent species. The transgene is expressed in a pattern analogous to the neonatal rat rather than the endogenous murine gene. These studies demonstrate that the cis-acting signals required for correct tissue specificity and developmental regulation of the rat atrial natriuretic factor gene are encoded in this 2.4-kilobase fragment and that these sequences act in a dominant fashion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号