首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Molecular mechanism of AHSP-mediated stabilization of alpha-hemoglobin   总被引:6,自引:0,他引:6  
Feng L  Gell DA  Zhou S  Gu L  Kong Y  Li J  Hu M  Yan N  Lee C  Rich AM  Armstrong RS  Lay PA  Gow AJ  Weiss MJ  Mackay JP  Shi Y 《Cell》2004,119(5):629-640
Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.  相似文献   

2.
Human α-hemoglobin stabilizing protein (AHSP) is a conserved mammalian erythroid protein that facilitates the production of Hemoglobin A by stabilizing free α-globin. AHSP rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈10 μm(-1) s(-1) and 0.2 s(-1), respectively, at pH 7.4 at 22 °C. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(30) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P30A and P30W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(30) conformer. Both wild-type and Pro(30)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ 0.002 s(-1)) is ~100-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.  相似文献   

3.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   

4.
The reduction of low-molecular-weight Cu(II) and Fe(III) complexes by soybean leghemoglobin alpha was characterized using both kinetic analysis and 1H-NMR experiments. Whereas Fe(III) (CN)6(3-) was reduced through an outer sphere transfer over the exposed heme edge, all other Cu(II) and Fe(III) complexes investigated were reduced via a site-specific binding of the metal to the protein. Reduction of all metal complexes was enhanced by decreasing pH while only Fe(III)NTA reduction kinetics were altered by changes in ionic strength. Rates of reduction for both Cu(II) and Fe(III) were also affected inversely by the effective binding constant of the metal chelate used. NMR data confirmed that both Cu(II)NTA and Fe(III)NTA were bound to specific sites on the protein. Cu(II) bound preferentially to distal His-61 and Fe(III) exerted its greatest effect on two surface lysine residues with epsilon proton resonances at 3.04 and 3.12 ppm. The Fe(III)NTA complex also had a mild but noticeable line broadening effect on the distal His-61 singlet resonance near 5.3 ppm. Like hemoglobin and myoglobin, leghemoglobin might function not only as an oxygen carrier, but also as a biological reductant for low-molecular-weight Cu(II) and Fe(III) complexes.  相似文献   

5.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

6.
Nagai M  Aki M  Li R  Jin Y  Sakai H  Nagatomo S  Kitagawa T 《Biochemistry》2000,39(43):13093-13105
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed.  相似文献   

7.
Treatment of normal human plasma with methylamine resulted in the discovery of an interleukin-1 beta(IL-1 beta) binding protein. The protein was labeled with 125I-IL-1 beta and the relative molecular mass (Mr) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein-IL-1 beta complex had a Mr of approximately 400,000 in non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis but became dissociated when exposed to beta-mercaptoethanol. The 125I-IL-1 beta labeled protein complex could be immunoprecipitated from plasma by using an anti-alpha 2-macroglobulin (alpha 2M) antiserum. Similarly, a monoclonal antibody (mAb) specific for electrophoretically fast ("F")alpha 2M was able to adsorb the 125I-IL-1 beta labeled complex from plasma. The mAb was also capable of adsorbing "F" alpha 2M-125I-IL-1 beta complexes from binary reaction mixtures, but failed to adsorb free 125I-IL-1 beta. Experiments carried out with purified plasma alpha 2M established that IL-1 beta became bound to alpha 2M only upon reaction with trypsin or methylamine, which results in the appearance of free thiol groups in alpha 2M ("F" alpha 2M). There was no binding of IL-1 beta to the native form of alpha 2M (electrophoretically slow or "S" alpha 2M), which lacks free thiol groups. Pretreatment of "F" alpha 2M with N-ethylmaleimide or [ethylenebis(oxyethylenenitrilo)] tetraacetic acid prevented complex formation between "F" alpha 2M and IL-1 beta. In contrast, the yield of "F" alpha 2M IL-1 beta complex formation was increased severalfold in the presence of 2.5 mM Zn2+. These findings indicate that "F" alpha 2M interacts with IL-1 beta through a thiol-disulfide exchange reaction. Zn2+ may play a major role in bringing together the reactive domains of the adjoining peptide backbones into proper orientation. The ready complex formation between "F" alpha 2M and the pleiotropic cytokine IL-1 beta suggests a novel biological role for "F" alpha 2M, since "F" alpha 2M-IL-1 beta complexes, but not "F" alpha 2M alone, retained IL-1-like activity in the thymocyte costimulator bioassay.  相似文献   

8.
Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy   总被引:3,自引:0,他引:3  
A W Addison  J J Stephanos 《Biochemistry》1986,25(14):4104-4113
Nitrosyl complexes of the iron(III) forms of myoglobin, human hemoglobin, Glycera dibranchiata hemoglobins (Hbm and Hbh), and model iron(II) and iron(III) synthetic porphyrins including octaethylporphyrin (OEP) have been prepared. The iron(III) heme proteins are electron spin (paramagnetic) resonance (ESR) silent, while hexacoordinate solution structures are indicated for [Fe(OEP)(NO)2]ClO4 and for Hbm(II)NO, which has an ESR spectrum similar to that of Mb(II)NO and the hexacoordinate iron(II) model complex Fe(OEP)NO(BzIm). The splitting of the alpha- and beta-bands in the optical spectrum of Mb(III)NO and Hbh(III)NO contrasts markedly with the sharp, single bands observed in that of Hbm-(III)NO. The nondegeneracy of the dxz and dyz orbitals in Mb(III)NO and Hbh(III)NO is attributed to the influence of the distal histidine. Circular dichroism spectra were obtained for Hbm(III)NO, Hbm(II)NO, Hbh(III)NO, Hbh(II)NO, Mb(II)NO, and Mb(III)NO. The vicinal chiral center contribution that governs the heme protein CD leads to low Kuhn anisotropies, which have been used to assign certain electronic transitions. The Hb(III)NO spectrum is not stable but transforms into that of Hb(II)NO. This autoredox process follows kinetics that are first order in FeIIINO. The relative rates of autoreduction (25 degrees C, 1 atm NO) are Mb(III)NO less than Hbm(III)NO less than Hb alpha(III)NO less than HbA(III)NO. At high NO partial pressure or after "recycling" of HbA, the rates of reduction decrease. The first step in the reaction of NO with the ferric heme is the reversible formation of the formally iron(III) adduct. This reacts with another molecule of NO, generating the final heme(II)-NO via nitrosylation of NO itself or of an endogenous nucleophile. Kinetic and spectroscopic evidence shows involvement of trans-heme-(NO)2 in the reaction. The activation parameters delta H and delta S were determined. The overall reaction is photoenhanced.  相似文献   

9.
YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.  相似文献   

10.
We have applied single-crystal X-ray diffraction methods to analyze the structure of [alpha(FeII-CO)beta(MnII)]2, a mixed-metal hybrid hemoglobin that crystallizes in the deoxyhemoglobin quaternary structure (the T-state) even though it is half liganded. This study, carried out at a resolution of 3.0 A, shows that (1) the Mn(II)-substituted beta subunits are structurally isomorphous with normal deoxy beta subunits, and (2) CO binding to the alpha subunits induces small, localized changes in the T-state that lack the main directional component of the corresponding larger structural changes in subunit tertiary structure that accompany complete ligand binding to all four subunits and the deoxy to oxy quaternary structure change. Specifically, in the T-state, CO binding to the alpha heme group draws the iron atom toward the heme plane, and this in turn pulls the last turn of the F helix (residues 85 through 89) closer to the heme group. The direction of these small movements is almost perpendicular to the axis of the F helix. In contrast, when the structures of fully liganded and deoxyhemoglobin are compared, extensive structural changes occur throughout the F helix and FG corner, and the main component of the atomic movements in the F helix (in addition to the smaller component toward the heme) is in a direction parallel to the heme plane and toward the alpha 1 beta 2 interface. These findings are discussed in terms of the current stereochemical theories of co-operative ligand binding and the Bohr effect.  相似文献   

11.
The polymerization of hemoglobin-derived ferric-protoporphyrin IX [Fe(III)PPIX] to inert hemozoin (malaria pigment) is a crucial and unique process for intraerythrocytic plasmodia to prevent heme toxicity and thus a good target for new antimalarials. Quinoline drugs, i.e., chloroquine, and non-iron porphyrins have been shown to block polymerization by forming electronic pi-pi interactions with heme monomers. Here, we report the identification of ferrous-protoporphyrin IX [Fe(II)PPIX] as a novel endogenous anti-malarial. Fe(II)PPIX molecules, released from the proteolysis of hemoglobin, are first oxidized and then polymerized to hemozoin. We obtained Fe(II)PPIX on preparative scale by electrochemical reduction of Fe(III)PPIX, and the reaction was monitored by cyclic voltammetry. Polymerization assays at acidic pH were conducted with the resulting Fe(II)PPIX using a spectrophotometric microassay of heme polymerization adapted to anaerobic conditions and the products characterized by infrared spectroscopy. Fe(II)PPIX (a) did not polymerize and (b) produced a dose-dependent inhibition of Fe(III)PPIX polymerization (IC(50) = 0.4 molar equiv). Moreover, Fe(II)PPIX produced by chemical reduction with thiol-containing compounds gave similar results: a dose-dependent inhibition of heme polymerization was observed using either L-cysteine, N-acetylcysteine, or DL-homocysteine, but not with L-cystine. Cyclic voltammetry confirmed that the inhibition of heme polymerization was due to the Fe(II)PPIX molecules generated by the thiol-mediated reduction of Fe(III)PPIX. These results point to Fe(II)PPIX as a potential endogenous antimalarial and to Fe(III)PPIX reduction as a potential new pharmacological target.  相似文献   

12.
Heme-regulated eukaryotic initiation factor 2alpha kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2alpha kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of full-length HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, six-coordinate NO-Fe(II)-His was observed but not Cys-Fe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.  相似文献   

13.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

14.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

15.
Heme-regulated eIF2alpha kinase [heme-regulated inhibitor (HRI)] plays a critical role in the regulation of protein synthesis by heme iron. The kinase active site is located in the C-terminal domain, whereas the N-terminal domain is suggested to regulate catalysis in response to heme binding. Here, we found that the rate of dissociation for Fe(III)-protoporphyrin IX was much higher for full-length HRI (1.5 x 10(-)(3) s(-)(1)) than for myoglobin (8.4 x 10(-)(7) s(-)(1)) or the alpha-subunit of hemoglobin (7.1 x 10(-)(6) s(-)(1)), demonstrating the heme-sensing character of HRI. Because the role of the N-terminal domain in the structure and catalysis of HRI has not been clear, we generated N-terminal truncated mutants of HRI and examined their oligomeric state, heme binding, axial ligands, substrate interactions, and inhibition by heme derivatives. Multiangle light scattering indicated that the full-length enzyme is a hexamer, whereas truncated mutants (truncations of residues 1-127 and 1-145) are mainly trimers. In addition, we found that one molecule of heme is bound to the full-length and truncated mutant proteins. Optical absorption and electron spin resonance spectra suggested that Cys and water/OH(-) are the heme axial ligands in the N-terminal domain-truncated mutant complex. We also found that HRI has a moderate affinity for heme, allowing it to sense the heme concentration in the cell. Study of the kinetics showed that the HRI kinase reaction follows classical Michaelis-Menten kinetics with respect to ATP but sigmoidal kinetics and positive cooperativity between subunits with respect to the protein substrate (eIF2alpha). Removal of the N-terminal domain decreased this cooperativity between subunits and affected the other kinetic parameters including inhibition by Fe(III)-protoporphyrin IX, Fe(II)-protoporphyrin IX, and protoporphyrin IX. Finally, we found that HRI is inhibited by bilirubin at physiological/pathological levels (IC(50) = 20 microM). The roles of the N-terminal domain and the binding of heme in the structural and functional properties of HRI are discussed.  相似文献   

16.
Considerable controversy remains as to the functional and structural properties of the asymmetric alpha1beta1 half-oxygenated intermediate of human hemoglobin, consisting of a deoxygenated and an oxygenated dimer. A recent dimer-tetramer equilibrium study using [Zn(II)/Fe(II)-O(2)] hybrid hemoglobins, in which Zn-protoporphyrin IX mimics a deoxyheme, showed that the key intermediate, [alpha(Fe-O(2))beta(Fe-O(2))][alpha(Zn)beta(Zn)], exhibited an enhanced tetramer stability relative to the other doubly oxygenated species. This is one of the strongest findings in support of distinctly favorable intra-dimer cooperativity within the tetramer. However, we present here a different conclusion drawn from direct O(2) binding experiments for the same asymmetric hybrid, [alpha(Fe)beta(Fe)][alpha(Zn)beta(Zn)], and those for [alpha(Fe)beta(Zn)](2) and [alpha(Zn)beta(Fe)](2). In this study, the O(2) equilibrium curves for [alpha(Fe)beta(Fe)][alpha(Zn)beta(Zn)] were determined by an O(2)-jump stopped-flow technique to circumvent the problem of dimer rearrangement, and those for [alpha(Fe)beta(Zn)]( 2) and [alpha(Zn)beta(Fe)]( 2) were measured by using an Imai apparatus. It was shown that the first and second O(2) equilibrium constants for [alpha(Fe)beta(Fe)][alpha(Zn)beta(Zn)] are 0.0209 mmHg(-1) and 0.0276 mmHg(-1), respectively, that are almost identical to those for [alpha(Fe)beta(Zn)](2) or [alpha(Zn)beta(Fe)](2). Therefore, we did not observe large difference among the asymmetric and symmetric hybrids. The discrepancy between the present and previous studies is mainly due to previously observed negative cooperativity for [alpha(Fe)beta(Zn)](2) and [alpha(Zn)beta(Fe)](2), which is not the case in our direct O(2) binding study.  相似文献   

17.
α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3–4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when βHb is abundant but diverts αHb to a redox resistant holding state when βHb is limiting.  相似文献   

18.
We undertook this project to clarify whether hemoglobin (Hb) dimers have a high affinity for oxygen and cooperativity. For this, we prepared stable Hb dimers by introducing the mutation Trp-->Glu at beta37 using our Escherichia coli expression system at the alpha1beta2 interface of Hb, and analyzed their molecular properties. The mutant hybrid Hbs with a single oxygen binding site were prepared by substituting Mg(II) protoporphyrin for ferrous heme in either the alpha or beta subunit, and the oxygen binding properties of the free dimers were investigated. Molecular weight determination of both the deoxy and CO forms showed all these molecules to be dimers in the absence of IHP at different protein concentrations. Oxygen equilibrium measurements showed high affinity and non-cooperative oxygen binding for all mutant Hb and hybrid Hb dimers. However, EPR results on the [alpha(N)(Fe-NO)beta(M)(Mg)] hybrid showed some alpha1beta1 interactions. These results provide some clues as to the properties of Hb dimers, which have not been studied extensively owing to practical difficulties in their preparation.  相似文献   

19.
Microperoxidase 8 (MP8) is able to react with alkyl- and aryl-isonitriles (RNC) both in its reduced and oxidized states, to form MP8Fe(II)- and MP8Fe(III)-CNR complexes. The coordination and spin states of these complexes have been fully characterized by UV-visible and resonance Raman spectroscopies. Both MP8Fe(II)- and MP8Fe(III)-CNR complexes are hexacoordinate low-spin complexes, which bear a single RNC ligand on the distal face of the heme and keep the His 18 ligand on its proximal face, trans to the RNC ligand. A comparison of these characteristics with those of the Fe-CNR complexes of other hemoproteins suggests that both MP8Fe(II)- and MP8Fe(III)-CNR complexes present a Fe-C-N linear arrangement. This may be due to the lack of any interactions of the RNC ligand with the octapeptide of MP8 that is mainly located over the opposite face of the heme. Finally the formation of hexacoordinate low-spin MP8Fe(II)- and MP8Fe(III)-CNR complexes constitutes a new example of the reactivity of MP8 with a new class of weak sigma-donating and strong pi-accepting ligands, which adds to its already very rich coordination chemistry.  相似文献   

20.
Complex formation of 5-coordinated iron(III) heme containing thiolate anion (p-nitrothiophenol) with imidazole (1-methylimidazole) showed very interesting features depending on the nature of the solvent and the ratio of the ligand to heme. The complexes formed under different conditions were not only low spin iron(III) complexes with a thiolate anion and an imidazole or with two imidazoles, but also reduced (iron(II] complexes with a thiolate and an imidazole or with two imidazoles. Absorption, magnetic circular dichroism, and 1H NMR spectroscopies could identify the complex formed when they were used concurrently. The dependence of polarity of the solvents used on the resultant chemical species was ascribed to the stability of Fe(III) or Fe(II) complex in the different solvents. The iron(III) complex with a thiolate anion and an imidazole was found to be reduced automatically to the iron(II) complex with a thiolate and an imidazole which exchanged ligand to the iron(II) bisimidazoles in the presence of excess imidazole. This study showed that the ligands of heme are easily exchanged and that the heme iron(III) is automatically reduced in several conditions. Possible significance with respect to biological systems containing a sulfur ligand is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号