首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

2.
3.
Rad4TopBP1, a BRCT domain protein, is required for both DNA replication and checkpoint responses. Little is known about how the multiple roles of Rad4TopBP1 are coordinated in maintaining genome integrity. We show here that Rad4TopBP1 of fission yeast physically interacts with the checkpoint sensor proteins, the replicative DNA polymerases, and a WD-repeat protein, Crb3. We identified four novel mutants to investigate how Rad4TopBP1 could have multiple roles in maintaining genomic integrity. A novel mutation in the third BRCT domain of rad4+TopBP1 abolishes DNA damage checkpoint response, but not DNA replication, replication checkpoint, and cell cycle progression. This mutant protein is able to associate with all three replicative polymerases and checkpoint proteins Rad3ATR-Rad26ATRIP, Hus1, Rad9, and Rad17 but has a compromised association with Crb3. Furthermore, the damaged-induced Rad9 phosphorylation is significantly reduced in this rad4TopBP1 mutant. Genetic and biochemical analyses suggest that Crb3 has a role in the maintenance of DNA damage checkpoint and influences the Rad4TopBP1 damage checkpoint function. Taken together, our data suggest that Rad4TopBP1 provides a scaffold to a large complex containing checkpoint and replication proteins thereby separately enforcing checkpoint responses to DNA damage and replication perturbations during the cell cycle.  相似文献   

4.
Genomic DNA is under constant attack from both endogenous and exogenous sources of DNA damaging agents. Without proper care, the ensuing DNA damages would lead to alteration of genomic structure thus affecting the faithful transmission of genetic information. During the process of evolution, organisms have acquired a series of mechanisms responding to and repairing DNA damage, thus assuring the maintenance of genome stability and faithful transmission of genetic information. DNA damage checkpoint is one such important mechanism by which, in the face of DNA damage, a cell can respond to amplified damage signals, either by actively halting the cell cycle until it ensures that critical processes such as DNA replication or mitosis are complete or by initiating apoptosis as a last resort. Over the last decade, complex hierarchical interactions between the key components like ATM/ATR in the checkpoint pathway and various other mediators, effectors including DNA damage repair proteins have begun to emerge. In the meantime, an intimate relationship between mechanisms of damage checkpoint pathway, DNA damage repair, and genome stability was also uncovered. Reviewed hereinare the recent findings on both the mechanisms of activation of checkpoint pathways and their coordination with DNA damage repair machinery as well as their effect on genomic integrity.  相似文献   

5.
生物有机体基因组DNA经常会受到内源或外源因素的影响而导致结构发生变化,产生损伤;在长期进化过程中,有机体也相应形成了一系列应对与修复损伤DNA,并维持染色体基因组正常结构功能的机制。其中DNA损伤检验点(DNA damage checkpoint)就是在感应DNA损伤的基础上,对损伤感应信号进行转导,或引起细胞周期的暂停,从而使细胞有足够的时间对损伤DNA进行修复,或最终导致细胞发生凋亡。DNA损伤检验点信号转导途径是一个高度保守的信号感应过程,整个途径大致可以分为损伤感应、信号传递及信号效应3个组成部分。其中3-磷脂酰肌醇激酶家族类成员ATM(ataxia-telangiectasia mutated)和ATR(ataxia-telangiectasia and Rad3-related)活性的增加构成整个途径活化的第一步。它们通过激活下游的效应激酶,Chk2/Chk1,通过协同作用许多其他调控细胞周期、DNA复制、DNA损伤修复及细胞凋亡等过程的蛋白质因子来实现细胞对DNA损伤的高度协调反应。近十几年,随着此领域研究的不断深入,人们逐步揭示了DNA损伤检验点途径发生过程中,各种核心组分通过与不同调节因子、效应因子及DNA损伤修复蛋白间的复杂相互作用,以实现监测感应异常DNA结构并实施相应反应的机制;其中,检验点衔接因子(mediators)及染色质结构,尤其是核小体组蛋白的共价修饰在调控ATM/ATR活性,促进ATM/ATR与底物间的相互作用以及介导DNA损伤位点周围染色质区域上多蛋白复合物在时间与空间上的动态形成发挥着重要的作用。同时,人们也开始发现DNA损伤检验点途径与DNA损伤修复、基因组稳定性以及肿瘤发生等过程之间某些内在的联系。该反应途径在通过协调细胞针对DNA损伤做出各种反应的基础上,直接或间接地参与或调控DNA损伤修复过程,并与DNA损伤修复途径协同作用最终保证染色体基凶组结构的完整性,而检验点途径的改变,则会引起基因组不稳定的发生,包括从突变频率的提高到大范围的染色体重排,以及染色体数量的畸变。如:突变发生在肿瘤形成早期,会大大增加肿瘤发生的几率。文章将对DNA损伤检验点途径机制及其对DNA损伤修复、基因组稳定性影响的最新进展进行综述。  相似文献   

6.
Vázquez MV  Rojas V  Tercero JA 《DNA Repair》2008,7(10):1693-1704
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.  相似文献   

7.
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.  相似文献   

8.
Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.  相似文献   

9.
Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase alpha, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase alpha and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA.  相似文献   

10.
The S phase checkpoint protects the genome from spontaneous damage during DNA replication, although the cause of damage has been unknown. We used a dominant-negative mutant of a subunit of CAF-I, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S phase chromatin assembly and found that this induced S phase arrest. Arrest was accompanied by DNA damage and S phase checkpoint activation and required ATR or ATM kinase activity. These results show that in human cells CAF-I activity is required for completion of S phase and that a defect in chromatin assembly can itself induce DNA damage. We propose that errors in chromatin assembly, occurring spontaneously or caused by genetic mutations or environmental agents, contribute to genome instability.  相似文献   

11.
The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.  相似文献   

12.
Alkylating agents, such as methyl methanesulfonate (MMS), damage DNA and activate the DNA damage checkpoint. Although many of the checkpoint proteins that transduce damage signals have been identified and characterized, the mechanism that senses the damage and activates the checkpoint is not yet understood. To address this issue for alkylation damage, we have reconstituted the checkpoint response to MMS in Xenopus egg extracts. Using four different indicators for checkpoint activation (delay on entrance into mitosis, slowing of DNA replication, phosphorylation of the Chk1 protein, and physical association of the Rad17 checkpoint protein with damaged DNA), we report that MMS-induced checkpoint activation is dependent upon entrance into S phase. Additionally, we show that the replication of damaged double-stranded DNA, and not replication of damaged single-stranded DNA, is the molecular event that activates the checkpoint. Therefore, these data provide direct evidence that replication forks are an obligate intermediate in the activation of the DNA damage checkpoint.  相似文献   

13.
Living organisms experience constant threats that challenge their genome stability. The DNA damage checkpoint pathway coordinates cell cycle progression with DNA repair when DNA is damaged, thus ensuring faithful transmission of the genome. The spindle assembly checkpoint inhibits chromosome segregation until all chromosomes are properly attached to the spindle, ensuring accurate partition of the genetic material. Both the DNA damage and spindle checkpoint pathways participate in genome integrity. However, no clear connection between these two pathways has been described. Here, we analyze mutants in the BRCT domains of fission yeast Crb2, which mediates Chk1 activation, and provide evidence for a novel function of the Chk1 pathway. When the Crb2 mutants experience damaged replication forks upon inhibition of the religation activity of topoisomerase I, the Chk1 DNA damage pathway induces sustained activation of the spindle checkpoint, which in turn delays metaphase-to-anaphase transition in a Mad2-dependent fashion. This new pathway enhances cell survival and genome stability when cells undergo replicative stress in the absence of a proficient G(2)/M DNA damage checkpoint.  相似文献   

14.
DNA structure checkpoint pathways in Schizosaccharomyces pombe   总被引:4,自引:0,他引:4  
Caspari T  Carr AM 《Biochimie》1999,81(1-2):173-181
The response to DNA damage includes a delay to progression through the cell cycle to aid DNA repair. Incorrectly replicated chromosomes (replication checkpoint) or DNA damage (DNA damage checkpoint) delay the onset of mitosis. These checkpoint pathways detect DNA perturbations and generate a signal. The signal is amplified and transmitted to the cell cycle machinery. Since the checkpoint pathways are essential for genome stability, the related proteins which are found in all eukaryotes (from yeast to mammals) are expected to have similar functions to the yeast progenitors. This review article focuses on the function of checkpoint proteins in the model system Schizosaccharomyces pombe. Checkpoint controls in Saccharomyces cerevisiae and mammalian cells are mentioned briefly to underscore common or diverse features.  相似文献   

15.
16.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   

17.
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.  相似文献   

18.
SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.  相似文献   

19.
To maintain genome stability, the cell has to limit initiation of DNA replication to once per cell cycle. Loss of this control leads to DNA re-replication with repeated firing of replication origins in the same cell cycle. Re-replication generates both ssDNA and double strand breaks, as well as activation of the DNA damage checkpoint. In re-replicated cells, activation of the checkpoint is critical to arrest cells in G2 resulting in accumulation of cells with re-replicated DNA. Abrogation of this checkpoint suppresses the progressive accumulation of cells with excess DNA and causes apoptosis. Recently, the Fanconi Anemia pathway was reported to be activated in re-replicating cells. Interestingly, FA core complexes but not FANCD2, is required for checkpoint activation in re-replicated cells, suggesting that the pathway to checkpoint activation requires the ubiquitination of substrates other than FANCD2. In addition, FANCD2 is required for recruitment of Rad51 to foci in re-replicated cells, so that the repair pathways activated after small degrees of re-replication are expected to be compromised in cells with mutations in the FA pathway.  相似文献   

20.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号