首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【背景】好氧反硝化是指在有氧条件下进行反硝化作用,使得硝化和反硝化过程能够在同一反应器中同时发生,是废水脱氮最具竞争力的技术。红树林湿地中蕴藏着丰富的微生物资源,分布着大量好氧反硝化微生物。【目的】了解耐盐微生物的脱氮机制,为含盐废水生物脱氮的工程实践提供理论依据,对一株分离于红树林湿地中的耐盐好氧细菌A63的硝酸盐异化还原能力进行分析。【方法】利用形态学特征及16S rRNA基因序列测定分析,对其种属进行了鉴定,采用单因子实验测定该菌在不同环境因子下的硝酸盐还原能力,并对其反硝化脱氮条件进行了优化。【结果】初步判定该菌株为卓贝儿氏菌(Zobellellasp.),其能在盐度0%-10%、pH5.0-10.0、温度20-40°C范围内进行反硝化脱氮和硝酸盐异化还原为氨(dissimilatorynitratereductiontoammonium,DNRA)作用。菌株A63最适生长碳源为柠檬酸钠(1.2 g/L),适宜脱氮盐度为3%、pH 7.0-7.5、温度30-35°C,且C/N为10。在最适脱氮条件下,该菌株12h内能将培养基中208.8mg/L硝态氮降至0,且仅有少量铵态氮生成...  相似文献   

2.
硝酸盐呼吸过程广泛存在于厌氧及兼性厌氧菌中.当硝酸盐存在时,微生物在微氧或缺氧条件下,以硝酸盐作为电子受体,与电子传递呼吸链过程相耦合,产生能量并用于维持细胞的基本生命活动.硝酸盐的呼吸过程对污水处理、土壤氮保持、微生物氮循环具有重要作用,研究硝酸盐呼吸对环境保护具有重要意义.该文对反硝化作用、硝酸盐异化还原为铵这两种...  相似文献   

3.
异化Fe(Ⅲ)还原微生物研究进展   总被引:7,自引:0,他引:7       下载免费PDF全文
黎慧娟  彭静静 《生态学报》2012,32(5):1633-1642
铁是地壳中含量第四丰富的元素,微生物介导的异化铁还原是自然界中Fe(Ⅲ)还原的主要途径。介绍了Fe(Ⅲ)还原菌的分类及多样性,总结了Fe(Ⅲ)还原菌还原铁氧化物机制及其产能代谢机制,概述了Fe(Ⅲ)还原菌的生态环境意义,并对未来Fe(Ⅲ)还原菌的分子生态学研究方向提出了探索性的建议。  相似文献   

4.
陆地和淡水生态系统新型微生物氮循环研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
祝贵兵 《微生物学报》2020,60(9):1972-1984
氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程.氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成.随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识.本文综述了陆地和淡水生态...  相似文献   

5.
工业固氮和化学氮肥的广泛使用极大地提升了作物产量、缓解了粮食危机,然而所造成的氮污染问题严重影响人类健康和生存环境。氮污染的净化主要依赖于微生物驱动的氮循环,近30多年来,先后发现了厌氧氨氧化、完全氨氧化和直接氨氧化等无机氮代谢新途径。希瓦氏菌属(Shewanella)是目前已知的所有细菌中呼吸系统最丰富的微生物类群之一,且广泛分布于自然生境中,在微生物燃料电池和环境生物修复方面均具有潜在应用价值。本文从希瓦氏菌的硝酸盐还原酶系统、第二信使环状腺苷酸(cyclic AMP, cAMP)受体蛋白(cAMP receptor protein, Crp)的调控以及硝酸盐还原途径的调控和抉择机制等方面出发阐述希瓦氏菌中反硝化脱氮(denitrification)和硝酸盐异化还原成铵(dissimilatory nitrate reduction to ammonium, DNRA)的分子调控机制,旨在为理解水圈微生物驱动的氮循环机制和研发环境保护新工艺提供参考。  相似文献   

6.
异化金属还原菌的研究进展   总被引:5,自引:0,他引:5  
微生物利用金属氧化物作呼吸作用的最终电子受体是一种新的代谢途径。该过程微生物利用有机底物异化还原金属氧化物进行生长代谢。异化金属还原菌对于研究探索古生物呼吸形式、界定生命的上限温度等生命科学问题具有重要研究价值,同时在生物整治、微生物燃料电池等方面具有广阔的应用前景。对异化金属还原菌进行了综述,并对这类菌的研究应用给了评述和展望。  相似文献   

7.
硝态氮异化还原机制及其主导因素研究进展   总被引:12,自引:0,他引:12       下载免费PDF全文
硝态氮(NO_3~-)异化还原过程通常包含反硝化和异化还原为铵(DNRA)两个方面,是土壤氮素转化的重要途径,其强度大小直接影响着硝态氮的利用和环境效应(如淋溶和氮氧化物气体排放)。反硝化和DNRA过程在反应条件、产物和影响因素等方面常会呈现出协同与竞争的交互作用机制。综述了反硝化和DNRA过程的研究进展及其二者协同竞争的作用机理,并阐述了在NO_3~-、pH、有效C、氧化还原电位(Eh)等环境条件和土壤微生物对其发生强度和产物的影响,提出了今后应在产生机理、土壤环境因素、微生物学过程以及与其他氮素转化过程耦联作用等方面亟需深入研究,以期增进对氮素循环过程的认识以及为加强氮素管理利用提供依据。  相似文献   

8.
异化硝酸盐和亚硝酸盐还原产铵是氮转化附属途径,为生态系统中氮的重复利用提供了依据,已成为近年来的研究热点。据报道,氮源的种类及浓度不同异化还原产铵的发生机制及强度具有差异性,决定着微生物产铵的效率,因此,有必要明确不同氮源异化还原产铵的代谢机制。本文详细论述了参与硝酸盐和亚硝酸盐异化还原产铵过程的相关微生物种类、产铵途径及其机理;系统分析了单一氮源和混合氮源对不同微生物产铵的影响和差异,比较了放线菌与其他微生物产铵的优势,并对未来的研究方向进行了展望,旨在为微生物异化硝酸盐和亚硝酸盐还原产铵提供理论基础。  相似文献   

9.
土壤Fe(Ⅲ)异化还原机理及影响因素研究进展   总被引:3,自引:0,他引:3  
迟光宇  张兆伟  陈欣  史奕 《生态学杂志》2007,26(12):2075-2080
微生物的异化Fe(Ⅲ)还原指以Fe(Ⅲ)为末端电子受体在厌氧条件下氧化有机物的产能过程,在生物地球化学循环中起着重要的作用,异化还原的产物为Fe(Ⅱ)。目前对Fe(Ⅲ)微生物还原的物理、生物化学特性的认识还十分有限。本文系统介绍了异化Fe(Ⅲ)还原的机理及影响因素,包括还原不溶性Fe(Ⅲ)氧化物的机制及与Fe(Ⅲ)还原相关的分子生物学的研究进展。分析了目前研究中存在的问题,并从分子生物学及生物地球化学角度对异化Fe(Ⅲ)还原研究方向进行了评述与展望。旨在加强相关领域研究人员对该科学问题的了解和重视,通过学科交叉和合作加快我国在这一领域的研究。  相似文献   

10.
硝酸盐还原促进毒害性有机污染物降解的研究进展   总被引:3,自引:0,他引:3  
大量具有高毒性、持久性和生物蓄积性的有机污染物被排放到环境中,对生态环境和人类健康造成了严重威胁。近年来,利用硝酸盐作电子受体在厌氧条件下降解毒害性有机污染物,已取得一定的进展。本文综述了硝酸盐还原体系中几种典型毒害性有机污染物(多环芳烃、单环或杂环芳烃类有机物及卤代有机物)的厌氧降解研究进展。在此基础上,提出了硝酸盐还原促进毒害性有机污染物降解研究中存在的主要问题及其在加速污染环境净化方面的应用前景。  相似文献   

11.
Abstract: Different reduced sulfur compounds (H2S, FeS, S2O32−) were tested as electron donors for dissimilatory nitrate reduction in nitrate-amended sediment slurries. Only in the free sulfide-enriched slurries was nitrate appreciably reduced to ammonia (     ), with concomitant oxidation of sulfide to S0 (     ). The initial concentration of free sulfide appears as a factor determining the type of nitrate reduction. At extremely low concentrations of free S2− (metal sulfides) nitrate was reduced via denitrification whereas at higher S2− concentrations, dissimilatory nitrate reduction to ammonia (DNRA) and incomplete denitrification to gaseous nitrogen oxides took place. Sulfide inhibition of NO- and N2O- reductases is proposed as being responsible for the driving part of the electron flow from S2− to NH4+.  相似文献   

12.
Azospirillum spp. participate in all steps of the nitrogen cycle except nitrification. They can fix molecular nitrogen and perform assimilatory nitrate reduction and nitrate respiration. Culture conditions have been defined under which nitrate is used both as terminal respiratory electron acceptor and as nitrogen source for growth. Nitrate and, possibly to a very limited extent, nitrite, but not sulfate, iron or fumarate support anaerobic respiration. Under anaerobic conditions, nitrate can also supply energy for nitrogen fixation but without supporting growth. Nitrate-dependent nitrogenase activity lasts only for 3–4 h until the enzymes of assimilatory nitrate reduction are synthesized. Nitrite accumulates during this period and inhibits nitrogenase activity at concentrations of about 1 mM.  相似文献   

13.
Whole-cell immobilization of selenate-respiring Sulfurospirillum barnesii in polyacrylamide gels was investigated to allow the treatment of selenate contaminated (790 μg Se × L−1) synthetic wastewater with a high molar excess of nitrate (1,500 times) and sulfate (200 times). Gel-immobilized S. barnesii cells were used to inoculate a mesophilic (30°C) bioreactor fed with lactate as electron donor at an organic loading rate of 5 g chemical oxygen demand (COD) × L−1 day−1. Selenate was reduced efficiently (>97%) in the nitrate and sulfate fed bioreactor, and a minimal effluent concentration of 39 μg Se × L−1 was obtained. Scanning electron microscopy with energy dispersive X-ray (SEM–EDX) analysis revealed spherical bioprecipitates of ≤2 μm diameter mostly on the gel surface, consisting of selenium with a minor contribution of sulfur. To validate the bioaugmentation success under microbial competition, gel cubes with immobilized S. barnesii cells were added to an Upflow Anaerobic Sludge Bed (UASB) reactor, resulting in earlier selenate (24 hydraulic retention times (HRTs)) and sulfate (44 HRTs) removal and higher nitrate/nitrite removal efficiencies compared to a non-bioaugmented control reactor. S. barnesii was efficiently immobilized inside the UASB bioreactors as the selenate-reducing activity was maintained during long-term operation (58 days), and molecular analysis showed that S. barnesii was present in both the sludge bed and the effluent. This demonstrates that gel immobilization of specialized bacterial strains can supersede wash-out and out-competition of newly introduced strains in continuous bioaugmented systems. Eventually, proliferation of a selenium-respiring specialist occurred in the non-bioaugmented control reactor, resulting in simultaneous nitrate and selenate removal during a later phase of operation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Characteristics of dissimilatory nitrate reduction by Propionibacterium acidi-propionici, P. freudenreichii, P. jensenii, P. shermanii and P. thoenii were studied. All strains reduced nitrate to nitrite and further to N2O. Recovery of added nitrite-N as N2O-N approached 100%, so that no other end product existed in a significant quantity. Specific rates of N2O production were 3 to 6 orders of magnitude lower than specific rates of N2 production by common denitrifiers. Oxygen but not acetylene inhibited N2O production in P. acidi-propionici and P. thoenii. Nitrite reduction rates were generally higher than nitrate reduction rates. The enzymes involved in nitrate and nitrite reduction were either constitutive or derepressed by anacrobiosis. Nitrate stimulated synthesis of nitrate reductase in P. acidi-propionici. Specific growth rates and growth yields were increased by nitrate. At 10 mM, nitrite was toxic to all strains, and at 1 mM its effect ranged from none to total inhibition. No distinction was obvious between incomplete forms of denitrification and dissimilatory nitrate reduction to ammonia. N2O production from nitrite by propionibacteria may represent a detoxication mechanism rather than a part of an energy transformation system.  相似文献   

15.
Denitrificationis a biological processin which nitrateand/or nitrite is reduced to gaseous nitrogen,dinitrogen(N2)or nitrous oxide(N2O)while carbon dioxide is thesecond gaseous product of the process.This is one of themain mechanisms of the global nitrogen cycle,and playsanimportant role as the reverse reaction of nitrogen fixa-tion in maintaining global environmental homeostasis[1].Denitrification has beenlongthought to be a unique char-acteristic of prokaryotes[2,3].Anumber of bacteria(such…  相似文献   

16.
Fluctuating soil redox regimes may facilitate the co-occurrence of microbial nitrogen transformations with significantly different sensitivities to soil oxygen availability. In an upland humid tropical forest, we explored the impact of fluctuating redox regimes on gross nitrogen cycling rates and microbial community composition. Our results suggest that the rapidly fluctuating redox conditions that characterize these upland soils allow anoxic and oxic N processing to co-occur. Gross nitrogen mineralization was insensitive to soil redox fluctuations. In contrast, nitrifiers in this soil were directly affected by low redox periods, yet retained some activity even after 3–6 weeks of anoxia. Dissimilatory nitrate reduction to ammonium (DNRA) was less sensitive to oxygen exposure than expected, indicating that the organisms mediating this reductive process were also tolerant of unfavorable (oxic) conditions. Denitrification was a stronger sink for NO3 in consistently anoxic soils than in variable redox soils. Microbial biomass and community composition were maintained with redox fluctuation, but biomass decreased and composition changed under static oxic and anoxic soil regimes. Bacterial community structure was significantly correlated with rates of nitrification, denitrification and DNRA, suggesting that redox-control of soil microbial community structure was an important determinant of soil N-cycling rates. Specific nitrogen cycling functional groups in this environment (such as nitrifiers, DNRA organisms, and denitrifiers) appear to have adapted to nutrient resources that are spatially and temporally variable. In soils where oxygen is frequently depleted and re-supplied, characteristics of microbial tolerance and resilience can frame N cycling patterns.  相似文献   

17.
18.
Summary Inappropriate method and timing of N fertilizer application was found to result in 50–60% N losses. Recent nitrogen transformation studies indicate that NH3 volatilization in lowland rice soils is an important loss mechanism, causing a 5–47% loss of applied fertilizer under field conditions. Estimated denitrification losses were between 28 and 33%. Ammonia volatilization losses from lowland rice can be controlled by i) placement of fertilizer in the reduced layer and proper timing of application, ii) using phenylphosphorodiamidate (PPD) to delay urease activity in flooded soils, and iii) using algicides to help stabilize changes in floodwater pH. Appropriate fertilizer placement and timing is probably the most effective technique in controlling denitrification at the farm level. The effectivity of nitrification inhibitors as another method is still being evaluated. With 60–80% of N absorbed by the crop derived from the native N pool, substantial yield gains in lowland rice are highly possible with resources already in the land. Extensive studies on soil N and its management, and an understanding of soil N dynamics will greatly facilitate the decrease in immobilization and ammonium fixation in the soil and the increase in N availability to the rice crop. Critical research needs include greater emphasis on N transformation processes in rainfed lowland rice which is grown under more harsh and variable environmental regimes than irrigated lowland rice.  相似文献   

19.
异化Fe(III)还原微生物是厌氧环境中广泛存在的一类主要微生物类群,它们的共同特征是可以利用Fe(III)作为末端电子受体而获能。异化Fe(III)还原微生物具有强大的代谢功能,可还原许多有毒重金属包括一些放射性核素,还可降解利用许多有机污染物,在污染环境的生物修复中具有重要的应用价值。本文对异化Fe(III)还原微生物的分布、分类,代谢功能多样性以及异化Fe(III)还原的意义做了评述,旨在加强相关领域的研究人员对此的了解和重视,通过学科的交叉和合作加快我国在这一领域的研究。  相似文献   

20.
Nitrogen fixation and nitrate reduction in the root nodules of legumes   总被引:1,自引:0,他引:1  
Published data on, and hypotheses regarding the effect of NO3 on functioning of legume root nodules are reviewed. It is concluded that a short-term reversible effect of NO3 may act via an increased resistance to O2 diffusion in nodules; this is coupled to decreased bacteroid respiration. For longer exposures to NO3 nodule activity is irreversibly lost, but how this relates to carbohydrate deprivation or NO-2 accumulation is unclear. Complicating factors include denitrification reactions and the interaction of NO2 with leghaemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号