首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin (SRIF) induces its biological effects by interacting with membrane-bound receptors that are linked to cellular effector systems via G proteins. We have studied SRIF receptor-G protein associations by solubilizing the SRIF receptor from rat brain and AtT-20 cells and immunoprecipitating the receptor-G protein complex with peptide-directed antisera against the different subunits of the G protein heterotrimer. Antiserum 8730, which selectively interacts with all Gi alpha subtypes, maximally and specifically immunoprecipitated SRIF receptor-Gi alpha complexes. To identify the subtypes of Gi alpha that are coupled to SRIF receptors, the subtype-selective antisera 3646, 1521, and 1518, which specifically interact with Gi alpha 1, Gi alpha 2, and Gi alpha 3, respectively, were used to immunoprecipitate SRIF receptor-Gi alpha complexes. Antiserum 3646 immunoprecipitated SRIF receptor-Gi alpha 1 complexes from both brain and AtT-20 cells. Antiserum 1521 immunoprecipitated Gi alpha 2 from both brain and AtT-20 cells but did not immunoprecipitate SRIF receptors from these tissues. Antiserum 1518 immunoprecipitated AtT-20 cell SRIF receptors but uncoupled brain SRIF receptor-G protein complexes. This result was confirmed with another peptide-selective antiserum, SQ, directed against Gi alpha 3. The findings from these studies indicate that Gi alpha 1 and Gi alpha 3 are coupled to SRIF receptors, whereas Gi alpha 2 is not. Even though brain and AtT-20 cell SRIF receptors were both coupled to Gi alpha, the receptors from these tissues differed in their coupling to Go alpha. Antiserum 2353, which is directed against Go alpha, immunoprecipitated SRIF receptors from AtT-20 cells, but did not immunoprecipitate or uncouple SRIF receptor-G protein complexes from rat brain. To determine the beta subunits associated with the SRIF receptor, antisera directed against G beta 36 and G beta 35 were used to immunoprecipitate SRIF receptor-G protein complexes from brain. Peptide-directed antiserum against G beta 36 selectively immunoprecipitated solubilized brain SRIF receptors. However, antiserum directed against the G beta 35 subunit did not immunoprecipitate brain SRIF receptors, suggesting that brain SRIF receptors may preferentially associate with G beta 36. In addition to coimmunoprecipitating with Gi alpha and G beta, brain SRIF receptors coimmunoprecipitated the G protein gamma subunits, G gamma 2 and G gamma 3. These results provide the first evidence that SRIF receptors are coupled to different subunits of G proteins and suggest that selectivity exists in the association of different G protein subunits with the SRIF receptor.  相似文献   

2.
Antibodies to chicken fast skeletal muscle (pectoralis) alpha-actinin and to smooth muscle (gizzard) alpha-actinin were absorbed with opposite antigens by affinity chromatography, and four antibody fractions were thus obtained: common antibodies reactive with both pectoralis and gizzard alpha-actinins ([C]anti-P alpha-An and [C]anti-G alpha-An), antibody specifically reactive with pectoralis alpha-actinin ([S]anti-P alpha-An), and antibody specifically reactive with gizzard alpha-actinin ([S]anti-G alpha-An). In indirect immunofluorescence microscopy, (C)anti-P alpha-An, (S)anti-P alpha-An, and (C)anti-G alpha- An stained Z bands of skeletal muscle myofibrils, whereas (S)anti-G alpha-An did not. Although (S)anti-G alpha-An and two common antibodies stained smooth muscle cells, (S)anti-P alpha-An did not. We used (S)anti-P alpha-An and (S)anti-G alpha-An for immunofluorescence microscopy to investigate the expression and distribution of skeletal- and smooth-muscle-type alpha-actinins during myogenesis of cultured skeletal muscle cells. Skeletal-muscle-type alpha-actinin was found to be absent from myogenic cells before fusion but present in them after fusion, restricted to Z bodies or Z bands. Smooth-muscle-type alpha- actinin was present diffusely in the cytoplasm and on membrane- associated structures of mononucleated and fused myoblasts, and then confined to membrane-associated structures of myotubes. Immunoblotting and peptide mapping by limited proteolysis support the above results that skeletal-muscle-type alpha-actinin appears at the onset of fusion and that smooth-muscle-type alpha-actinin persists throughout the myogenesis. These results indicate (a) that the timing of expression of skeletal-muscle-type alpha-actinin is under regulation coordination with other major skeletal muscle proteins; (b) that, with respect to expression and distribution, skeletal-muscle-type alpha-actinin is closely related to alpha-actin, whereas smooth-muscle-type alpha- actinin is to gamma- and beta-actins; and (c) that skeletal- and smooth- muscle-type alpha-actinins have complementary distribution and do not co-exist in situ.  相似文献   

3.
The presence and distribution of alpha-actinin, an actin-bundling protein, was investigated at sites where frog skeletal muscle forms junctions with tendon collagen fibers. These sites, called myotendinous junctions, are regions where myofibrils terminate and where the force of muscular contraction is transmitted from muscle cells to the substratum. An antibody manufactured to chicken smooth muscle alpha-actinin was used as a probe for alpha-actinin localization in this study. The cross-reactivity of this antibody with frog skeletal muscle alpha-actinin is demonstrated in immunoblots of one-dimensional (1D) electrophoretic separations of muscle proteins. Immunofluorescent localization of anti-alpha-actinin and electron microscopic immunolabelling confirms that the antibody binds to Z-discs with high affinity. However, in sections treated for electron microscopy with affinity-purified anti-alpha-actinin and a ferritin-conjugated, second antibody, there was no significant difference between experimental or control preparations in the number of ferritin grains overlying dense, subsarcolemmal material at junctional or non-junctional regions. Furthermore, Z-discs near myotendinous junctions displayed less binding of anti-alpha-actinin than Z-discs located several micrometers or more from the cells' termini. These findings indicate that thin filaments are not bundled by alpha-actinin near the sarcolemma. The results also provide evidence for molecular heterogeneity between Z-discs at the ends of muscle cells compared with other regions of the cell in that the terminal Z-discs of myofibrils contain very little or no alpha-actinin relative to non-terminal Z-discs.  相似文献   

4.
5.
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.  相似文献   

6.
Immunoblotting studies with antisera against Z-protein, desmin, and alpha-actinin showed that Z-protein is clearly distinguishable from desmin and alpha-actinin. Z-protein is not a proteolytic product of another protein but is an intrinsic component of chicken breast muscle myofibrils. In these experiments, an SDS extract of intact muscle was first electrophoresed in a polyacrylamide gel, and then proteins were transferred to a nitrocellulose paper sheet. Detection of each protein on the sheet was made possible by the application of the indirect immunofluorescence technique with the respective antiserum. Immunofluorescence microscope studies using these antisera revealed that Z-protein has the same distribution as alpha-actinin in isolated Z- disk sheets. Anti-Z-protein antiserum and anti-alpha-actinin antiserum stained the interior of Z-disks. On the other hand, antiserum against desmin stained the periphery of Z-disks in isolated Z-disk sheets.  相似文献   

7.
Cytosolic sialidase was purified from rat skeletal muscle, and the purified enzyme migrated as a single band of Mr 43,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A polyclonal antibody raised against the enzyme inhibited and immunoprecipitated rat liver cytosolic sialidase as well as the muscle enzyme but failed to cross-react with the intralysosomal sialidase of rat liver and membrane sialidases I (synaptosomal) and II (lysosomal) of rat brain. The antibody against brain membrane sialidase I (anti-I) and that against sialidase II (anti-II), which could be useful to discriminate the two enzymes, did not cross-react with the intralysosomal and cytosolic sialidases of liver. Although more than 90% of liver plasma membrane sialidase was immunoprecipitated with anti-I, only 60% of liver lysosomal membrane sialidase was immunoprecipitated with anti-II, the remainder being immunoprecipitated with anti-I. In confirmation of these data, liver lysosomal membrane exhibited two peaks of ganglioside sialidase corresponding to the membrane sialidases I and II on Aminohexyl-Sepharose chromatography while only one peak of ganglioside sialidase corresponding to sialidase I was observed for liver plasma membrane. These results indicate that the four types of rat sialidase are proteins distinct from one another and that the three kinds of antisera described above are useful for discriminating these sialidases qualitatively and probably quantitatively.  相似文献   

8.
Receptors for the monokine, interleukin-1 (IL-1), have been successfully immunoprecipitated with a xenogeneic antiserum raised in our laboratories. Receptors solubilized from mouse cell membranes as well as nascent chains of molecules that could bind IL-1 were immunoprecipitated. Receptor complexes were identified on mouse cell lines which express IL-1 receptors by affinity cross-linkage of the radiolabeled ligands, IL-1-alpha or IL-1-beta. Soluble IL-1 or IL-1 nonspecifically associated with membranes of cells which do not express IL-1 receptors was not immunoprecipitated. It is apparent, thus, that antibodies present in the xenogeneic antiserum could specifically bind to the IL-1 receptor moiety within the complex. The major proportion of IL-1 receptor complexes that were reproducibly immunoprecipitated had a molecular weight of 97,000. Cell membrane associated receptors for the monokine, tumor necrosis factor, were not immunoprecipitated. These antibodies have contributed to the understanding of the role of IL-1 receptors in cytolytic effector T cell generation and should contribute further in the purification and characterization of the IL-1 receptor moiety, as well as in determining IL-1-mediated mechanisms of cellular activation.  相似文献   

9.
Abstract: In Lambert-Eaton myasthenic syndrome neurotransmitter release is reduced by an autoimmune response directed against the calcium channel complex of the nerve terminal. Autoantibodies were detected by immunoprecipitation assays using solubilized receptors labeled with ligands selective for N-type (125I-ω conotoxin GVIA) and L-type ([3H]PN200-110) calcium channels. Sera with a high antibody titer (>3 n M ) against rat brain N-type channels contained autoantibodies that immunoprecipitated neuronal and muscle L-type channels. These IgG fractions stained a 55-kDa protein in immunoblots of purified skeletal muscle dihydropyridine receptor, suggesting that they contain autoantibodies against the β subunit of the calcium channel. A distinct antibody population in the same fractions reacted with a nerve terminal 65-kDa protein that is unrelated to the β subunit and displays properties similar to those of synaptotagmin.  相似文献   

10.
The high affinity ryanodine receptor of the Ca2+ release channel from junctional sarcoplasmic reticulum of rabbit skeletal muscle has been identified and characterized using monoclonal antibodies. Anti-ryanodine receptor monoclonal antibody XA7 specifically immunoprecipitated [3H]ryanodine-labeled receptor from digitonin-solubilized triads in a dose-dependent manner. [3H]Ryanodine binding to the immunoprecipitated receptor from unlabeled digitonin-solubilized triads was specific, Ca2+-dependent, stimulated by millimolar ATP, and inhibited by micromolar ruthenium red. Indirect immunoperoxidase staining of nitrocellulose blots of various skeletal muscle membrane fractions has demonstrated that anti-ryanodine receptor monoclonal antibody XA7 recognizes a high molecular weight protein (approximately 350,000 Da) which is enriched in isolated triads but absent from light sarcoplasmic reticulum vesicles and transverse tubular membrane vesicles. Thus, our results demonstrate that monoclonal antibodies to the approximately 350,000-Da junctional sarcoplasmic reticulum protein immunoprecipitated the ryanodine receptor with properties identical to those expected for the ryanodine receptor of the Ca2+ release channel.  相似文献   

11.
We introduce two new, rapid procedures. One is specifically designed for isolating alpha-actinin from skeletal and the other for isolating alpha-actinin from smooth muscle. Approximately 20 mg of greater than 95% pure alpha-actinin can be obtained/100 g of ground chicken pectoral muscle in just 4 days. The smooth muscle protocol yields 2.7 mg of greater than 99% pure alpha-actinin/100 g of ground gizzard after just 5 days. Differences in protein contaminants and in the extractability of alpha-actinin necessitated the development of separate isolation procedures for the two muscle types. Antibody prepared against the purified gizzard alpha-actinin reacted with alpha-actinin from skeletal, cardiac, and smooth muscle in immunodiffusion. Anti-alpha-actinin reacted only with alpha-actinin from crude extracts of skeletal and smooth muscle on Staph A gels. Anti-alpha-actinin stained Z-bands from skeletal muscle in indirect immunofluorescence microscopy and stress fibers from baby hamster kidney fibroblasts and mouse mammary epithelial cells in the characteristic punctate pattern observed by other workers (Lazarides, E., and Burridge, K. (1975) Cell 6, 289-298). These two methods for purifying alpha-actinin from skeletal and smooth muscle represent a significant improvement over that published previously.  相似文献   

12.
An 80 kDa glycoprotein was isolated from adult frog skeletal muscle by concanavalin (Con A) affinity chromatography and electrophoretic separation by molecular mass. Characteristics of the 80 kDa glycoprotein are that it: 1) binds non-covalently to gelatin-agarose or some other protein(s) bound to gelatin-agarose, 2) does not bind wheat germ agglutinin, 3) appears only at 80 kDa in both reducing and non-reducing electrophoretic separations, 4) is present in skeletal muscle but absent in smooth muscle and cardiac muscle, 5) is not collagenase or hyaluronidase-sensitive, and 6) is antigenically similar to a protein in embryonic chicken skeletal muscle. It was used to generate a polyclonal antiserum which was affinity-purified and used for immunolocalization. Indirect immunofluorescence procedures showed the antigen to be present on the surface of the skeletal muscle cells and concentrated at sites where cells are closely apposed to one another. Preparations in which adult muscle cells were depleted of basement membrane and endomysial proteins did not reduce the amount of 80 kDa protein present in skeletal muscle. These data indicate that this is a cell surface glycoprotein that may mediate attachment of the cell to extracellular proteins at sites where adjacent skeletal muscle cells are apposed.  相似文献   

13.
Partial purification of the dihydropyridine receptor from rat skeletal muscle demonstrated mainly a 60 kDa band in SDS-polyacrylamide gel. An antibody raised against that protein behaved as a calcium channel agonist viz. Bay K8644. The affinity purified antibody, when added to cultured heart cells, increased the beat rate 40-80% depending on the titer of the antiserum. The antibody also woke up the beats of the cells previously blocked with the channel antagonist, nifedipine. Immunoblot analysis indicated that the receptor of this antibody in heart cell membrane is also a 60 kDa protein.  相似文献   

14.
A battery of monoclonals to the rabbit skeletal muscle alpha-actinin has been produced. The majority of monoclonals proved to be species-specific by indirect immunofluorescence on the isolated rabbit skeletal myofibrils and on the differentiating cultures of chicken and rat skeletal muscles. One monoclonal, EA-53, reacts with the skeletal muscle alpha-actinin of various species (rat, rabbit, chicken) in immunofluorescence and immunoblotting. The monoclonal EA-53 recognizes also heart muscle alpha-actinin in cultured cardiomyocytes of human, rat and mouse origin. EA-53 does not stain alpha-actinin in myoblasts, fibroblasts, and endothelial cells. The monoclonal antibody EA-53 discriminating muscle and nonmuscle alpha-actinin isoforms could be used as a tool to study the mechanisms of skeletal and cardiac myogenesis.  相似文献   

15.
A major protein in detergent extracts of skeletal muscle appears at 38,000 daltons in electrophoretic separations. Previous investigations have provided indirect evidence that a 38-kD skeletal muscle protein is membrane associated, and this inference has served as the basis for speculations on 38-kD protein function. In the present study, affinity purified, polyclonal antisera against 38-kD protein from skeletal muscle are produced for immunolocalization and biochemical assays. Immunoblots of two-dimensional electrophoretic separations show that this protein is heterogenously charged at pI approximately 6.4. This 38-kD protein is not extracted from muscle in low ionic strength or high ionic strength buffers, in isotonic buffers from pH 4 to pH 8 or in buffers containing 5 mM EGTA. The 38-kD protein is extracted, however, by isotonic, pH 7.0 buffer containing 1.0% Triton-X. Light microscope observations using indirect immunofluorescence of anti-38-kD labeled tissue show the protein distributed in a reticular pattern within cross-sectional muscle but not at the cell surface. Longitudinal sections show the protein concentrated in periodic, transverse bands. Purified fractions of muscle plasma membrane analyzed by immunoblotting contain 38-kD protein. Immunoblots using anti-38 kD show that this protein is present in all vertebrate skeletal muscle examined, however, the protein is present only in cardiac muscle that contains transverse tubules. The antibody does not recognize aldolase, another 38-kD striated muscle protein.  相似文献   

16.
Antibodies against the subunits of the dihydropyridine-sensitive L-type calcium channel of skeletal muscle were tested for their ability to immunoprecipitate the high affinity (Kd = 0.13 nM) 125I-omega-conotoxin GVIA receptor from rabbit brain membranes. Monoclonal antibody VD2(1) against the beta subunit of the dihydropyridine receptor from skeletal muscle specifically immunoprecipitated up to 86% of the 125I-omega-conotoxin receptor solubilized from brain membranes whereas specific antibodies against the alpha 1, alpha 2, and gamma subunits did not precipitate the brain receptor. Purified skeletal muscle dihydropyridine receptor inhibited the immunoprecipitation of the brain omega-conotoxin receptor by monoclonal antibody VD2(1). The dihydropyridine receptor from rabbit brain membranes was also precipitated by monoclonal antibody VD2(1). However, neither the neuronal ryanodine receptor nor the sodium channel was precipitated by monoclonal antibody VD2(1). The omega-conotoxin receptor immunoprecipitated by monoclonal antibody VD2(1) showed high affinity 125I-omega-conotoxin binding, which was inhibited by unlabeled omega-contoxin and by CaCl2 but not by nitrendipine or by diltiazem. An antibody against the beta subunit of the skeletal muscle dihydropyridine receptor stained 58- and 78-kDa proteins on immunoblot of the omega-conotoxin receptor, partially purified through heparin-agarose chromatography and VD2(1)-Sepharose chromatography. These results suggest that the brain omega-conotoxin-sensitive calcium channel contains a component homologous to the beta subunit of the dihydropyridine-sensitive calcium channel of skeletal muscle and brain.  相似文献   

17.
We have prepared an antibody against chicken erythrocyte α spectrin, using as immunogen protein purified by two-dimensional polyacrylamide gel electrophoresis. One- and two-dimensional immunoautoradiography show that this antiserum reacts only with α spectrin in chicken erythrocytes and crossreacts with α spectrin in erythrocytes from various mammals. Immunofluorescence reveals that this antiserum reacts with a plasma membrane component in erythrocytes as well as in most nonerythroid avian and mammalian cells. Intense staining is seen at or near the plasma membrane in neurons, lens cells, endothelial and epithelial cells of the gastrointestinal and respiratory tracts, skeletal and cardiac muscle, as well as skeletal myotubes grown in tissue culture. Immunoautoradiography indicates that the crossreactive antigen in these nonerythroid tissues has the same molecular weight and isoelectric point as the chicken erythrocyte antigen. Smooth muscle, tracheal cilia, myelin and mature sperm stain weakly or not at all. These results suggest that spectrin is more extensively distributed than previously recognized, and that the functions of spectrin elucidated for erythrocytes may apply to other cell types as well.  相似文献   

18.
Previous work has shown that a mammary-derived growth factor (MDGF1), a human milk-derived, acidic, 62-kDa, N-glycosylated growth factor binds to cell surface receptors and stimulates proliferation of mammary epithelial cells. An 18-amino acid N-terminal partial sequence of the factor did not show any homology to other known growth factors or proteins. Using polyclonal antiserum raised against the synthetic peptide, we demonstrated that conditioned medium prepared from human breast cancer cell lines contains the factor. The antibody could adsorb the biological activity of the factor present in the conditioned medium. Earlier experiments on receptor cross-linking indicated that the receptor was approximately 120-140 kDa. Since tyrosine phosphorylation plays a crucial role in cell proliferation and cell transformation, experiments were conducted to find out whether MDGF1 induces the appearance of phosphotyrosine in MDGF1-receptor-positive MDA-MB 468, MCF-7, and 184A1N4 cell lines compared to receptor-negative lines. Western blot analysis using monoclonal antiphosphotyrosine indicated that MDGF1 induces phosphotyrosine in a 180-185-kDa protein in MDGF1 receptor-positive cell lines. Phosphorylation was not blocked and phosphorylated proteins were not immunoprecipitated by an antibody directed against the binding site of the EGF receptor. Cell membrane fractionation demonstrated that phosphorylation induced by MDGF1 was membrane-associated. The nature of this 180-185-kDa protein and its possible relationship to the MDGF1 receptor are under investigation.  相似文献   

19.
Structural analysis of the myeloma-associated membrane antigen KMA   总被引:1,自引:0,他引:1  
kappa-Myeloma antigen (KMA) was immunoprecipitated from lactoperoxidase-radioiodinated HMy2 lymphoblastoid cells by using monoclonal antibody K-1-21 and was analyzed by SDS-PAGE. Under reducing conditions, two major subunits of Mr approximately 26,000 and Mr approximately 42,000, and minor components of Mr approximately 28,000, 31,000, and 36,000 were observed. The Mr approximately 26,000 subunit was identical to kappa-light chains from HMy2 surface IgG in apparent m.w., isoelectric point, and staphylococcal V-8 protease peptide map, but was not precipitated in association with Ig heavy chain. The Mr approximately 42,000 component was homologous to rabbit skeletal muscle actin by peptide mapping with staphylococcal V-8 protease. The cell surface origin of the immunoprecipitated antigen was confirmed by demonstrating lactoperoxidase dependence of iodination and complete removal from the cell surface after pronase treatment of viable cells. Thus, cell surface expression of KMA is the result of membrane association of non-heavy chain-linked kappa-light chains, possibly in noncovalent association with actin.  相似文献   

20.
Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M-24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M-24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M-24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present in very low concentrations on skeletal muscle fibroblasts, embryonic myotubes, or adult myofibers. These antigens are free to diffuse laterally within the myoblast membrane and may be modulated in response to appropriate environmental cues during myodifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号