首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
2.
Li Y  Guolo A  Hoffman FO  Carroll RJ 《Biometrics》2007,63(4):1226-1236
In radiation epidemiology, it is often necessary to use mathematical models in the absence of direct measurements of individual doses. When complex models are used as surrogates for direct measurements to estimate individual doses that occurred almost 50 years ago, dose estimates will be associated with considerable error, this error being a mixture of (a) classical measurement error due to individual data such as diet histories and (b) Berkson measurement error associated with various aspects of the dosimetry system. In the Nevada Test Site(NTS) Thyroid Disease Study, the Berkson measurement errors are correlated within strata. This article concerns the development of statistical methods for inference about risk of radiation dose on thyroid disease, methods that account for the complex error structure inherence in the problem. Bayesian methods using Markov chain Monte Carlo and Monte-Carlo expectation-maximization methods are described, with both sharing a key Metropolis-Hastings step. Regression calibration is also considered, but we show that regression calibration does not use the correlation structure of the Berkson errors. Our methods are applied to the NTS Study, where we find a strong dose-response relationship between dose and thyroiditis. We conclude that full consideration of mixtures of Berkson and classical uncertainties in reconstructed individual doses are important for quantifying the dose response and its credibility/confidence interval. Using regression calibration and expectation values for individual doses can lead to a substantial underestimation of the excess relative risk per gray and its 95% confidence intervals.  相似文献   

3.
4.
The relationship between nutrient consumption and chronic disease risk is the focus of a large number of epidemiological studies where food frequency questionnaires (FFQ) and food records are commonly used to assess dietary intake. However, these self-assessment tools are known to involve substantial random error for most nutrients, and probably important systematic error as well. Study subject selection in dietary intervention studies is sometimes conducted in two stages. At the first stage, FFQ-measured dietary intakes are observed and at the second stage another instrument, such as a 4-day food record, is administered only to participants who have fulfilled a prespecified criterion that is based on the baseline FFQ-measured dietary intake (e.g., only those reporting percent energy intake from fat above a prespecified quantity). Performing analysis without adjusting for this truncated sample design and for the measurement error in the nutrient consumption assessments will usually provide biased estimates for the population parameters. In this work we provide a general statistical analysis technique for such data with the classical additive measurement error that corrects for the two sources of bias. The proposed technique is based on multiple imputation for longitudinal data. Results of a simulation study along with a sensitivity analysis are presented, showing the performance of the proposed method under a simple linear regression model.  相似文献   

5.
We construct Bayesian methods for semiparametric modeling of a monotonic regression function when the predictors are measured with classical error. Berkson error, or a mixture of the two. Such methods require a distribution for the unobserved (latent) predictor, a distribution we also model semiparametrically. Such combinations of semiparametric methods for the dose response as well as the latent variable distribution have not been considered in the measurement error literature for any form of measurement error. In addition, our methods represent a new approach to those problems where the measurement error combines Berkson and classical components. While the methods are general, we develop them around a specific application, namely, the study of thyroid disease in relation to radiation fallout from the Nevada test site. We use this data to illustrate our methods, which suggest a point estimate (posterior mean) of relative risk at high doses nearly double that of previous analyses but that also suggest much greater uncertainty in the relative risk.  相似文献   

6.
7.
Exposure measurement error can result in a biased estimate of the association between an exposure and outcome. When the exposure–outcome relationship is linear on the appropriate scale (e.g. linear, logistic) and the measurement error is classical, that is the result of random noise, the result is attenuation of the effect. When the relationship is non‐linear, measurement error distorts the true shape of the association. Regression calibration is a commonly used method for correcting for measurement error, in which each individual's unknown true exposure in the outcome regression model is replaced by its expectation conditional on the error‐prone measure and any fully measured covariates. Regression calibration is simple to execute when the exposure is untransformed in the linear predictor of the outcome regression model, but less straightforward when non‐linear transformations of the exposure are used. We describe a method for applying regression calibration in models in which a non‐linear association is modelled by transforming the exposure using a fractional polynomial model. It is shown that taking a Bayesian estimation approach is advantageous. By use of Markov chain Monte Carlo algorithms, one can sample from the distribution of the true exposure for each individual. Transformations of the sampled values can then be performed directly and used to find the expectation of the transformed exposure required for regression calibration. A simulation study shows that the proposed approach performs well. We apply the method to investigate the relationship between usual alcohol intake and subsequent all‐cause mortality using an error model that adjusts for the episodic nature of alcohol consumption.  相似文献   

8.
Summary .   We examine two issues of importance in nutritional epidemiology: the relationship between dietary fat intake and breast cancer, and the comparison of different dietary assessment instruments, in our case the food frequency questionnaire (FFQ) and the multiple-day food record (FR). The data we use come from women participants in the control group of the Dietary Modification component of the Women's Health Initiative (WHI) Clinical Trial. The difficulty with the analysis of this important data set is that it comes from a truncated sample, namely those women for whom fat intake as measured by the FFQ amounted to 32% or more of total calories. We describe methods that allow estimation of logistic regression parameters in such samples, and also allow comparison of different dietary instruments. Because likelihood approaches that specify the full multivariate distribution can be difficult to implement, we develop approximate methods for both our main problems that are simple to compute and have high efficiency. Application of these approximate methods to the WHI study reveals statistically significant fat and breast cancer relationships when a FR is the instrument used, and demonstrate a marginally significant advantage of the FR over the FFQ in the local power to detect such relationships.  相似文献   

9.
In the regression analysis of clustered data it is important to allow for the possibility of distinct between- and within-cluster exposure effects on the outcome measure, represented, respectively, by regression coefficients for the cluster mean and the deviation of the individual-level exposure value from this mean. In twin data, the within-pair regression effect represents association conditional on exposures shared within pairs, including any common genetic or environmental influences on the outcome measure. It has therefore been proposed that a comparison of the within-pair regression effects between monozygous (MZ) and dizygous (DZ) twins can be used to examine whether the association between exposure and outcome has a genetic origin. We address this issue by proposing a bivariate model for exposure and outcome measurements in twin-pair data. The between- and within-pair regression coefficients are shown to be weighted averages of ratios of the exposure and outcome variances and covariances, from which it is straightforward to determine the conditions under which the within-pair regression effect in MZ pairs will be different from that in DZ pairs. In particular, we show that a correlation structure in twin pairs for exposure and outcome that appears to be due to genetic factors will not necessarily be reflected in distinct MZ and DZ values for the within-pair regression coefficients. We illustrate these results in a study of female twin pairs from Australia and North America relating mammographic breast density to weight and body mass index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号