首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The human RH locus is responsible for the expression of the Rh blood group antigens. It consists of two closely linked genes, RHD and RHCE, that exhibit 92% similarity between coding regions. These observations suggest that they are derived from a relatively recent duplication event. Previously a study of nonhuman primate RH-like genes demonstrated that ancestral RH gene duplication occurred in the common ancestor of man, chimpanzees and gorillas. By amplification of intron 3 and intron 4 of gorilla RH-like genes, we have now shown that, like man, gorillas possess two types of RH intron 3 (RHCE intron 3 being 289 bp longer than the RHD intron 3) and two types of intron 4 (RHCE intron 4 being 654 bp longer than the RHD intron 4). Here we report the characterization of a cDNA encoded by a gorilla RH-like gene which possesses introns 3 and 4 of the RHCE type. A comparison of this gorilla RHCE-like coding sequence with previously characterized human and ape cDNA sequences suggests that RH genes experienced complex recombination events after duplication in the common ancestor of humans, chimpanzees and gorillas.  相似文献   

2.
The human Rh blood-group system is encoded by two homologous genes,RhD andRhCE. TheRH genes in gorillas and chimpanzees were investigated to delineate the phylogeny of the humanRH genes. Southern blot analysis with an exon 7-specific probe suggested that gorillas have more than twoRH genes, as has recently been reported for chimpanzees. Exon 7 was well conserved between humans, gorillas, and chimpanzees, although the exon 7 nucleotide sequences from gorillas were more similar to the humanD gene, whereas the nucleotide sequences of this exon in chimpanzees were more similar to the humanCE gene. The intron between exon 4 and exon 5 is polymorphic and can be used to distinguish the humanD gene from theCE gene. Nucleotide sequencing revealed that the basis for the intron polymorphism is anAlu element inCE which is not present in theD gene. Examination of gorilla and chimpanzee genomic DNA for this intron polymorphism demonstrated that theD intron was present in all the chimpanzees and in all but one gorilla. TheCE intron was found in three of six gorillas, but in none of the seven chimpanzees. Sequence data suggested that theAlu element might have previously been present in the chimpanzeeRH genes but was eliminated by excision or recombination. Conservation of theRhD gene was also apparent from the complete identity between the 3′-noncoding region of the human D cDNA and a gorilla genomic clone, including anAlu element which is present in both species. The data suggest that at least twoRH genes were present in a common ancestor of humans, chimpanzees, and gorillas, and that additionalRH gene duplication has taken place in gorillas and chimpanzees. TheRhCE gene appears to have diverged more thanRhD among primates. In addition, theRhD gene deletion associated with the Rh-negative phenotype in humans seems to have occurred after speciation. Correspondence to: C.M. Westhoff  相似文献   

3.
Coding sequences of the paralogous FUT1 (H), FUT2 (Se), and Sec1 alpha 2-fucosyltransferase genes were obtained from different primate species. Analysis of the primate FUT1-like and FUT2-like sequences revealed the absence of the known human inactivating mutations giving rise to the h null alleles of FUT1 and the se null alleles of FUT2. Therefore, most primate FUT1-like and FUT2-like genes potentially code for functional enzymes. The Sec1-like gene encodes for a potentially functional alpha 2-fucosyltransferase enzyme in nonprimate mammals, New World monkeys, and Old World monkeys, but it has been inactivated by a nonsense mutation at codon 325 in the ancestor of humans and African apes (gorillas, chimpanzees). Human and gorilla Sec1's have, in addition, two deletions and one insertion, respectively, 5' of the nonsense mutation leading to proteins shorter than chimpanzee Sec1. Phylogenetic analysis of the available H, Se, and Sec1 mammalian protein sequences demonstrates the existence of three clusters which correspond to the three genes. This suggests that the differentiation of the three genes is rather old and predates the great mammalian radiation. The phylogenetic analysis also suggests that Sec1 has a higher evolutionary rate than FUT2 and FUT1. Finally, we show that an Alu-Y element was inserted in intron 1 of the FUT1 ancestor of humans and apes (chimpanzees, gorillas, orangutans, and gibbons); this Alu-Y element has not been found in monkeys or nonprimate mammals, which lack ABH antigens on red cells. A potential mechanism leading to the red cell expression of the H enzyme in primates, related to the insertion of this Alu-Y sequence, is proposed.  相似文献   

4.
The Rhesus (Rh) blood group system in humans is encoded by two genes with high sequence homology. These two genes, namely, RHCE and RHD, have been implied to be duplicated during evolution. However, the genomic organization of Rh genes in chimpanzees and other nonhuman primates has not been precisely studied. We analyzed the arrangement of the Rh genes of chimpanzees (Pan troglodytes) by two-color fluorescence in situ hybridization on chromatin DNA fibers (fiber-FISH) using two genomic DNA probes that respectively contain introns 3 and 7 of human RH genes. Among the five chimpanzees studied, three were found to be homozygous for the two-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5'). Although a similar gene arrangement can be detected in the RH gene locus of typical Rh-positive humans, the distance between the two genes in chimpanzees was about 50 kb longer than that in humans. The remaining two chimpanzees were homozygous for a four-Rh-gene type, in an arrangement of Rh (5'-->3') - Rh (3'<--5') - Rh (3'<--5') - Rh (3'<--5') within a region spanning about 300 kb. This four-Rh-gene type has not been detected in humans. Further analysis of other great apes showed different gene arrangements: a bonobo was homozygous for the three-Rh-gene type; a gorilla was heterozygous for the one-Rh- and two-Rh-gene types; an orangutan was homozygous for the one-Rh-gene type. Our findings on the intra- and interspecific genomic variations in the Rh gene locus in Hominoids would shed further light on reconstructing the genomic pathways of Rh gene duplication during evolution.  相似文献   

5.
Evidence from DNA sequencing studies strongly indicated that humans and chimpanzees are more closely related to each other than either is to gorillas [1-4]. However, precise details of the nature of the evolutionary separation of the lineage leading to humans from those leading to the African great apes have remained uncertain. The unique insertion sites of endogenous retroviruses, like those of other transposable genetic elements, should be useful for resolving phylogenetic relationships among closely related species. We identified a human endogenous retrovirus K (HERV-K) provirus that is present at the orthologous position in the gorilla and chimpanzee genomes, but not in the human genome. Humans contain an intact preintegration site at this locus. These observations provide very strong evidence that, for some fraction of the genome, chimpanzees, bonobos, and gorillas are more closely related to each other than they are to humans. They also show that HERV-K replicated as a virus and reinfected the germline of the common ancestor of the four modern species during the period of time when the lineages were separating and demonstrate the utility of using HERV-K to trace human evolution.  相似文献   

6.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

7.
8.
All expressed human MHC class I genes (HLA-A, -B, -C, -E, -F, and -G) have functional orthologues in the MHC of the common chimpanzee (Pan troglodytes). In contrast, a nonclassical MHC class I gene discovered in the chimpanzee is not present in humans or the other African ape species. In exons and more so in introns, this Patr-AL gene is similar to the expressed A locus in the orangutan, Popy-A, suggesting they are orthologous. Patr-AL/Popy-A last shared a common ancestor with the classical MHC-A locus >20 million years ago. Population analysis revealed little Patr-AL polymorphism: just three allotypes differing only at residues 52 and 91. Patr-AL is expressed in PBMC and B cell lines, but at low level compared with classical MHC class I. The Patr-AL polypeptide is unusually basic, but its glycosylation, association with beta(2)-microglobulin, and antigenicity at the cell surface are like other MHC class I. No Patr-AL-mediated inhibition of polyclonal chimpanzee NK cells was detected. The Patr-AL gene is present in 50% of chimpanzee MHC haplotypes, correlating with presence of a 9.8-kb band in Southern blots. The flanking regions of Patr-AL contain repetitive/retroviral elements not flanking other class I genes. In sequenced HLA class I haplotypes, a similar element is present in the A*2901 haplotype but not the A*0201 or A*0301 haplotypes. This element, 6 kb downstream of A*2901, appears to be the relic of a human gene related to Patr-AL. Patr-AL has characteristics of a class I molecule of innate immunity with potential to provide common chimpanzees with responses unavailable to humans.  相似文献   

9.
Summary Immunoglobulin epsilon and alpha genes of chimpanzee and gorilla were isolated and their structures were compared with their human counterparts. Multiple deletions and duplications seem to have happened in both genes during hominoid evolution; the chimpanzee had deleted the entire C2 gene after its divergence. In addition, the length of the C1 hinge region of gorilla is distinct from those of chimpanzee and humans. Structural homology of the epsilon and alpha genes suggests that humans are evolutionarily closer to chimpanzees than to gorillas.  相似文献   

10.
In the Caucasian population, the RH locus of RhD-positive individuals is composed of two homologous genes, RHD and RHCE, arranged in tandem but of a single gene, RHCE, in RhD-negative individuals. Many variants recently characterized carry rearranged RH genes, most often by an unidirectional segmental DNA-exchange (gene-conversion) event. In D(VI) variants of type II, RHD is a D-CE-D hybrid gene in which the DNA fragment carrying exons 4-6 has been replaced by the corresponding sequences from the RHCE gene. To identify precisely and characterize the two transition sites, we have studied, by both PCR and sequence analysis, a genomic region between the 3' end of intron 3 and exon 7 in normal RHCE and RHD genes as well as in D(VI) DNA. We show that the D-CE breakpoint is located in intron 3, within a 250-bp fragment comprising an Alu S sequence, and that the CE-D breakpoint lies within a 39-bp fragment in intron 6. This Alu S sequence (and the 100-bp region immediately downstream) most likely defines a recombination hot spot, since there lies also the 5' breakpoint of different rearrangement events leading to D-CE and CE-D transitions in hybrid D(VI),DFR and Dc-,R(N) gene complexes, respectively.  相似文献   

11.
The reactivities of three human anti-D monoclonal antibodies (mAbs) with human, chimpanzee, and gorilla red blood cells (RBCs) were compared by quantitative radioimmunology and indirect immunofluorescence methods. The number of antigenic sites varies widely in gorillas (from 48,000-283,000), while in chimpanzees this number is very close to that observed in human R1R2 RBCs. The affinity of the anti-D antibodies was slightly lower with ape RBCs than with D-positive human RBCs. In chimpanzee, the D-like epitopes recognition is enhanced by papain while the gorilla D-like epitopes are destroyed by enzyme treatment.  相似文献   

12.
We humans have many characteristics that are different from those of the great apes. These human-specific characters must have arisen through mutations accumulated in the genome of our direct ancestor after the divergence of the last common ancestor with chimpanzee. Gene trees of human and great apes are necessary for extracting these human-specific genetic changes. We conducted a systematic analysis of 103 protein-coding genes for human, chimpanzee, gorilla, and orangutan. Nucleotide sequences for 18 genes were newly determined for this study, and those for the remaining genes were retrieved from the DDBJ/EMBL/GenBank database. The total number of amino acid changes in the human lineage was 147 for 26,199 codons (0.56%). The total number of amino acid changes in the human genome was, thus, estimated to be about 80,000. We applied the acceleration index test and Fisher's synonymous/nonsynonymous exact test for each gene tree to detect any human-specific enhancement of amino acid changes compared with ape branches. Six and two genes were shown to have significantly higher nonsynonymous changes at the human lineage from the acceleration index and exact tests, respectively. We also compared the distribution of the differences of the nonsynonymous substitutions on the human lineage and those on the great ape lineage. Two genes were more conserved in the ape lineage, whereas one gene was more conserved in the human lineage. These results suggest that a small proportion of protein-coding genes started to evolve differently in the human lineage after it diverged from the ape lineage.  相似文献   

13.
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.  相似文献   

14.
Koga A  Notohara M  Hirai H 《Genetica》2011,139(2):167-175
Subterminal satellite (StSat) repeats, consisting of 32-bp-long AT-rich units (GATATTTCCATGTT(T/C)ATACAGATAGCGGTGTA), were first found in chimpanzee and gorilla (African great apes) as one of the major components of heterochromatic regions located proximal to telomeres of chromosomes. StSat repeats have not been found in orangutan (Asian great ape) or human. This patchy distribution among species suggested that the StSat repeats were present in the common ancestor of African great apes and subsequently lost in the lineage leading to human. An alternative explanation is that the StSat repeats in chimpanzee and gorilla have different origins and the repeats did not occur in human. The purpose of the present study was quantitative evaluation of the above alternative possibilities by analyzing the nucleotide variation contained in the repeats. We collected large numbers of sequences of repeat units from genome sequence databases of chimpanzee and gorilla, and also bonobo (an African great ape phylogenetically closer to chimpanzee). We then compared the base composition of the repeat units among the 3 species, and found statistically significant similarities in the base composition. These results support the view that the StSat repeats had already formed multiple arrays in the common ancestor of African great apes. It is thus suggested that humans lost StSat repeats which had once grown to multiple arrays.  相似文献   

15.
Chimpanzees and gorillas are among man's closest living relatives, sharing most of the human genetic code and having many similarities to humans in anatomy, physiology, and behavior. Like humans, these apes make and use tools and have strong family bonds. Chimpanzees even show population-specific behaviors similar to those of human cultures. However, chimpanzee and gorilla populations are in dramatic decline due to bushmeat hunting, habitat loss, and the varied risks of small, isolated populations. The first step in conserving the world's ape populations in the wild is to recognize and understand the complexities of these threats. Mitigating the risks takes a deeper understanding of ape behavior. This article provides examples of how gorilla and chimpanzee behavioral studies intersect with, and are critical to, conservation efforts.  相似文献   

16.
To study the genomic divergences among hominoids and to estimate the effective population size of the common ancestor of humans and chimpanzees, we selected 53 autosomal intergenic nonrepetitive DNA segments from the human genome and sequenced them in a human, a chimpanzee, a gorilla, and an orangutan. The average sequence divergence was only 1.24% +/- 0.07% for the human-chimpanzee pair, 1.62% +/- 0.08% for the human-gorilla pair, and 1.63% +/- 0.08% for the chimpanzee-gorilla pair. These estimates, which were confirmed by additional data from GenBank, are substantially lower than previous ones, which included repetitive sequences and might have been based on less-accurate sequence data. The average sequence divergences between orangutans and humans, chimpanzees, and gorillas were 3.08% +/- 0.11%, 3.12% +/- 0.11%, and 3.09% +/- 0.11%, respectively, which also are substantially lower than previous estimates. The sequence divergences in other regions between hominoids were estimated from extensive data in GenBank and the literature, and Alus showed the highest divergence, followed in order by Y-linked noncoding regions, pseudogenes, autosomal intergenic regions, X-linked noncoding regions, synonymous sites, introns, and nonsynonymous sites. The neighbor-joining tree derived from the concatenated sequence of the 53 segments--24,234 bp in length--supports the Homo-Pan clade with a 100% bootstrap value. However, when each segment is analyzed separately, 22 of the 53 segments (approximately 42%) give a tree that is incongruent with the species tree, suggesting a large effective population size (N(e)) of the common ancestor of Homo and Pan. Indeed, a parsimony analysis of the 53 segments and 37 protein-coding genes leads to an estimate of N(e) = 52,000 to 96,000. As this estimate is 5 to 9 times larger than the long-term effective population size of humans (approximately 10,000) estimated from various genetic polymorphism data, the human lineage apparently had experienced a large reduction in effective population size after its separation from the chimpanzee lineage. Our analysis assumes a molecular clock, which is in fact supported by the sequence data used. Taking the orangutan speciation date as 12 to 16 million years ago, we obtain an estimate of 4.6 to 6.2 million years for the Homo-Pan divergence and an estimate of 6.2 to 8.4 million years for the gorilla speciation date, suggesting that the gorilla lineage branched off 1.6 to 2.2 million years earlier than did the human-chimpanzee divergence.  相似文献   

17.
We examined range use by great apes during logging activities and investigated associations between local variations in ape abundance and changes in the structure of the habitat or in the availability of fruits after disturbances. We carried out two annual censuses of western lowland gorilla (G. g. gorilla) and chimpanzee populations (Pan t. troglodytes) in an active logging concession in Southeast Cameroon. The results suggest that gorillas may adapt their range use to avoid most recently logged compartments, while chimpanzees appear to be more spatially resilient to logging. In our study site, selective logging affected 10% of the forest. After logging, gorillas nested in all types of vegetation, while chimpanzees nested exclusively in mixed mature forest. Fruit availability was not affected by logging and did not explain the distribution of ape nests in the study area.  相似文献   

18.
The human Rhesus (Rh) blood group locus is composed of two highly homologous genes, the RHD and RHCE genes on chromosome 1, encoding the D, C/c, and E/e antigens in common Rh-positive phenotypes. In general, the RHD gene is either absent or grossly deleted in Rh-negative individuals. In this study, gene organization at the RH locus of Japanese donors with different serological phenotypes was directly analyzed by two-color fluorescence in situ hybridization on DNA fibers released from their lymphocytes (fiber-FISH) and by using DNA probes of introns 3 and 7 of the RHCE and RHD genes. Six Rh-positive samples (two with the D+C-c+E+e-, two with the D+C+c-E-e+, and two with the D+C+c+E+e+ phenotype) showed the presence of two RH genes within a region of less than 200 kb on chromosome 1p36.1. Of great interest was the finding that the genes were arranged in the antidromic order of the telomere -RHCE (5'--> 3') -RHD (3'-->5') - centromere. On the other hand, two typical Rh-negative samples (D-C-c+E+e+) showed the presence of only one RHCE gene, as expected. Moreover, further analysis combined with a locus-specific assay of three Rh-negative samples (D-C+c+E+e+, D-C+c+E-e+, and D-C+c-E-e+) showed the possible presence of the RHD gene(s) and complex rearrangements, including partial deletion, duplication, and recombination, in this region; these could be responsible for the Rh-negative phenotype.  相似文献   

19.
Chimpanzees and gorillas are among man's closest living relatives, sharing most of the human genetic code and having many similarities to humans in anatomy, physiology, and behavior. Like humans, these apes make and use tools and have strong family bonds. Chimpanzees even show population-specific behaviors similar to those of human cultures. However, chimpanzee and gorilla populations are in dramatic decline due to bushmeat hunting, habitat loss, and the varied risks of small, isolated populations. The first step in conserving the world's ape populations in the wild is to recognize and understand the complexities of these threats. Mitigating the risks takes a deeper understanding of ape behavior. This article provides examples of how gorilla and chimpanzee behavioral studies intersect with, and are critical to, conservation efforts.  相似文献   

20.
High-resolution G-banding analysis has demonstrated remarkable morphological conservation of the chromosomes of the Hominidae family members (humans, chimpanzees, gorillas, and orangutans), with the most notable differences between the genomes appearing as changes in heterochromatin distribution and pericentric inversions. Pericentric inversions may have been important for the establishment of reproductive isolation and speciation of the hominoids as they diverged from a common ancestor. Here the previously published primate karyotype comparisons, coupled with the resources of the Human Genome Project, have been used to identify pericentric inversion breakpoints seen when comparing the human karyotype to that of chimpanzee. Yeast artificial chromosome (YAC) clones were used to detect, by fluorescencein situhybridization, five evolutionary pericentric inversion breakpoints present on the chimpanzee chromosome equivalents of human chromosomes 4, 9, and 12. In addition, two YACs from human 12p that detect a breakpoint in chimpanzee detect a similar rearrangement in gorilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号