首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductive optical/EPR titrations of trimethylamine dehydrogenase with sodium dithionite have been performed, indicating that the equilibrium distribution of reducing equivalents between the covalently bound FMN and 4Fe/4S centers in partially reduced trimethylamine dehydrogenase is pH-dependent. In the case of two-electron reduced enzyme, formation of fully reduced flavin with oxidized iron-sulfur is favored below pH 7.5, whereas above pH 8 formation of flavin semiquinone with reduced iron-sulfur is preferred. The rates of electron transfer between the sites have been measured with the stopped-flow rapid mixing technique using a pH jump. The observed rate constants fall in the range of 200 s-1 to 1000 s-1 at 25 degrees C with the larger values occurring at higher values of final pH. The values of the rate constants depend on the final pH and are independent of observation wave-length. The temperature dependencies of these reactions give linear Arrhenius plots with activation energies in the range of 12 to 16 kcal/mol, consistent with prototropic equilibria being associated with electron transfer. The pH dependence of EPR spectral line widths for the flavin semiquinone and static optical spectra suggest that the semiquinone form of flavin present at pH 10 is anionic, whereas the neutral form is present at pH 7. The observed rate constants at 25 degrees C are greater than or equal to 100-fold larger than kcat for this enzyme and indicate that intramolecular electron transfer is not intrinsically rate-limiting in overall catalysis.  相似文献   

2.
A solvent kinetic isotope effect study of electron transfer in two complex flavoproteins, xanthine oxidase and trimethylamine dehydrogenase, has been undertaken. With xanthine oxidase, electron transfer from the molybdenum center to the proximal iron-sulfur center of the enzyme occurs with a modest solvent kinetic isotope effect of 2.2, indicating that electron transfer out of the molybdenum center is at least partially coupled to deprotonation of the Mo(V) donor. A Marcus-type analysis yields a decay factor, beta, of 1.4 A(-1), indicating that, although the pyranopterin cofactor of the molybdenum center forms a nearly contiguous covalent bridge from the molybdenum atom to the proximal iron-sulfur center of the enzyme, it affords no exceptionally effective mode of electron transfer between the two centers. For trimethylamine dehydrogenase, rates of electron equilibration between the flavin and iron-sulfur center of the one-electron reduced enzyme have been determined, complementing previous studies of electron transfer in the two-electron reduced form. The results indicate a substantial solvent kinetic isotope effect of 10 +/- 4, consistent with a model for electron transfer that involves discrete protonation/deprotonation and electron transfer steps. This contrasts to the behavior seen with xanthine oxidase, and the basis for this difference is discussed in the context of the structures for the two proteins and the ionization properties of their flavin sites. With xanthine oxidase, a rationale is presented as to why it is desirable in certain cases that the physical layout of redox-active sites not be uniformly increasing in reduction potential in the direction of physiological electron transfer.  相似文献   

3.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

4.
R Hille 《Biochemistry》1991,30(35):8522-8529
Solvent kinetic isotope effect studies of electron transfer within xanthine oxidase have been performed, using a stopped-flow pH-jump technique to perturb the distribution of reducing equivalents within partially reduced enzyme and follow the kinetics of reequilibration spectrophotometrically. It is found that the rate constant for electron transfer between the flavin and one of the iron-sulfur centers of the enzyme observed when the pH is jumped from 10 to 6 decreases from 173 to 25 s-1 on going from H2O to D2O, giving an observed solvent kinetic isotope effect of 6.9. An effect of comparable magnitude is observed for the pH jump in the opposite direction, the rate constant decreasing from 395 to 56 s-1. The solvent kinetic isotope effect on kobs is found to be directly proportional to the mole fraction of D2O in the reaction mix for the pH jump in each direction, consistent with the effect arising from a single exchangeable proton. Calculations of the microscopic rate constants for electron transfer between the flavin and the iron-sulfur center indicate that the intrinsic solvent kinetic isotope effect for electron transfer from the neutral flavin semiquinone to the iron-sulfur center designated Fe/S I is substantially greater than for electron transfer in the opposite direction and that the observed solvent kinetic isotope effect is a weighted averaged of the intrinsic isotope effects for the forward and reverse microscopic electron-transfer steps.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Extensively or completely activated preparations of beef heart succinate dehydrogenase have been investigated by electron paramagnetic resonance (EPR) techniques at 6 to 97 K. Reductive titrations with dithionite and rapid kinetic studies were performed with various types of soluble and membrane-bound preparations of the enzyme. The following components were detected and their behavior analyzed: a free radical, presumably arising from the covalently bound flavin on reduction, two iron-sulfur centers of the ferredoxin type, the signals of which appear on reduction, and a highpotential iron-sulfur component, detectable in the oxidized state. The high-potential component was only detected in complex II and inner-membrane preparations. This component and one of the ferredoxin-type centers were present in amounts close to stoichiometric with the flavin and were reduced by substrate. The other ferredoxin-type center was present in amounts between 0.1 and 0.5 times that of the flavin and was reduced only by dithionite. Of the components reduced by succinate, however, only a fraction (up to 50% of the high-potential iron-sulfur center and 40-60% of the ferredoxin-type iron-sulfur center) was reduced within the turnover time of the enzymes; In complex II not more than about 10% of the flavin appeared in the semiquinone form at any time. Soluble, purified preparations behaved similarly except that the high-potential component was nearly or completely absent and extensive accumulation of the free radical occurred (up to 70 to 80% of the flavin) in titration and kinetic experiments. No significant difference was observed between the rates of semiquinone formation and the reduction of the ferredoxin-type or high-potential centers by the substrate. Also no qualitative differences in the properties studied in this work became apparent between prepatations containing 4 or 8 iron atoms, respectively.  相似文献   

6.
The redox potentials and pH characteristics of D-amino-acid oxidase (EC 1.4.3.3; DAAO) from the yeast Rhodotorula gracilis and Trigonopsis variabilis were measured in the pH range 6.5-8.5 at 15 degrees C. In the free enzyme form, the anionic red semiquinone is quantitatively formed in both DAAOs, indicating that a two single-electron transfer mechanism is active. The semiquinone species is also thermodynamically stable, as indicated by the large separation of the single-electron transfer potentials. The first electron potential is pH-independent, while the second electron transfer is pH-dependent exhibiting a approximately -60 mV/pH unit slope, consistent with a one-electron/one-proton transfer. In the presence of the substrate analogue benzoate, the two-electron transfer is the thermodynamically favoured process for both DAAOs, with only a quantitative difference in the stabilization of the anionic semiquinone. Clearly binding of the substrate (or substrate analogue) modulates the redox properties of the two enzymes. In both cases, in the presence and absence of benzoate, the slope of Em vs. pH (-30 mV/pH unit) corresponds to an overall two-electron/one-proton transfer in the reduction to yield the anionic reduced flavin. This behaviour is similar to that reported for DAAO from pig kidney. The differences in potentials and the stability of the semiquinone intermediate measured for the three DAAOs probably stem from different isoalloxazine environments. In the case of R. gracilis DAAO, the low stability of the semiquinone form in the DAAO-benzoate complex can be explained by the shift in position of the side chain of Arg285 following substrate analogue binding.  相似文献   

7.
The kinetics of electron transfer within the molybdoflavoenzyme xanthine oxidase has been investigated using the technique of pulse radiolysis. Subsequent to one-electron reduction of native enzyme at 20 degrees C in 20 mM pyrophosphate buffer, pH 8.5, using the CO-.2 species as reductant, a spectral change is observed having a rate constant of approximately 290 s-1. From its wavelength dependence, this spectral change is assigned to the transfer of an electron from flavin semiquinone (formed on reaction with the CO2-. species) to one of the iron-sulfur centers of the enzyme in an intramolecular equilibration process. The value for this rate constant agrees well with the 330 s-1 observed in previous stopped-flow pH-jump experiments carried out at 25 degrees C (Hille, R., and Massey, V. (1986) J. Biol. Chem. 261, 1241-1247). Experimental results with fully reduced enzyme reacting with the radiolytically generated N.3 species also support the conclusion that the equilibration of reducing equivalents among the oxidation-reduction centers of xanthine oxidase is a rapid process. Evidence is also found that xanthine oxidase possesses an unusually reactive disulfide bond that is reduced rapidly by radiolytically generated radicals. The ramifications of the present results with regard to the interpretation of experiments involving chemically reactive radical species, generated either by photolysis or radiolysis, are discussed.  相似文献   

8.
The objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps. The neutral (blue) semiquinone form, as an intermediate in the air-oxidation, was unstable in the presence of O(2). The purified FAD/NADPH domain prepared under our experimental conditions was activated by NADP(+) but not NAD(+). These results indicate that this domain exists in two states; an active state and a resting state, and the enzyme in the resting state can be activated by NADP(+). For the FAD/FMN domain, the reduction of the FAD-FMN pair of the oxidized enzyme with NADPH proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The formation of semiquinones from the FAD-FMN pair was greatly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form, FAD-FMNH(.), was further rapidly reduced by NADPH with an increase at 520 nm, which is a characteristic peak of the FAD semiquinone. Results presented here indicate that intramolecular one-electron transfer from FAD to FMN is activated by the binding of Ca(2+)/CaM.  相似文献   

9.
The galactofuranose moiety found in many surface constituents of microorganisms is derived from UDP-D-galactopyranose (UDP-Galp) via a unique ring contraction reaction catalyzed by a FAD-dependent UDP-Galp mutase. When the enzyme is reduced by sodium dithionite, its catalytic efficiency increases significantly. Since the overall transformation exhibits no net change in the redox state of the parties involved, how the enzyme-bound FAD plays an active role in the reaction mechanism is puzzling. In this paper, we report our study of the catalytic properties of UDP-Galp mutase reconstituted with deaza-FADs. It was found that the mutase reconstituted with FAD or 1-deazaFAD has comparable activity, while that reconstituted with 5-deazaFAD is catalytically inactive. Because 5-deazaFAD is restricted to net two-electron process, yet FAD and 1-deazaFAD can undergo concerted two-electron as well as stepwise one-electron redox reactions, the above results support a radical mechanism for the mutase catalyzed reaction. In addition, the activity of the mutase reconstituted with FAD was found to increase considerably at high pHs. These observations have allowed us to propose a new mechanism involving one-electron transfer from the reduced FAD to an oxocarbenium intermediate generated by C-1 elimination of UDP to give a hexose radical and a flavin semiquinone. Subsequent radical recombination leads to a coenzyme-substrate adduct which may play a central role to facilitate the opening and recyclization of the galactose ring. A deprotonation step, accompanied or followed the electron transfer step, to increase the nucleophilicity of the flavin radical anion may account for the activity enhancement at pH > 8.  相似文献   

10.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Electron transfer in milk xanthine oxidase as studied by pulse radiolysis   总被引:1,自引:0,他引:1  
Electron transfer within milk xanthine oxidase has been examined by the technique of pulse radiolysis. Radiolytically generated N-methylnicotinamide radical or 5-deazalumiflavin radical has been used to rapidly and selectively introduce reducing equivalents into the enzyme so that subsequent equilibration among the four redox-active centers of the enzyme (a molybdenum center, two iron-sulfur centers, and FAD) could be monitored spectrophotometrically. Experiments have been performed at pH 6 and 8.5, and a comprehensive scheme describing electron equilibration within the enzyme at both pH values has been developed. All rate constants ascribed to equilibration between specific pairs of centers in the enzyme are found to be rapid relative to enzyme turnover under the same conditions. Electron equilibration between the molybdenum center and one of the iron-sulfur centers of the enzyme (tentatively assigned Fe/S I) is particularly rapid, with a pH-independent first-order rate constant of approximately 8.5 x 10(3) s-1. The results unambiguously demonstrate the role of the iron-sulfur centers of xanthine oxidase in mediating electron transfer between the molybdenum and flavin centers of the enzyme.  相似文献   

12.
The effect of pH on the reaction of free flavosemiquinone analogs generated by laser-flash photolysis with oxidized Chromatium vinosum high-potential iron-sulfur protein, other iron-containing redox proteins, and nonbiological one-electron oxidants has been investigated. The results demonstrate that the second-order rate constant for the oxidation of lumiflavin flavosemiquinone increases dramatically with increasing pH for the redox proteins and some of the other oxidants. The pH-rate constant profiles for the redox proteins closely follow the ionization of the proton at the N-5 position of the neutral lumiflavin flavosemiquinone, suggesting a higher intrinsic reactivity for the anionic lumiflavin flavosemiquinone. This increased reactivity apparently results from changes in the redox potential and in the electron spin density distribution between the two protonic forms of the semiquinone. Similar pH dependencies are observed for a number of other flavin structural analogs, yielding estimates of the N-5 pK values for these analogs. The data are consistent with the involvement of both the N-5-dimethylbenzene ring portion and the C-4a position of the flavin macrocycle in flavosemiquinone oxidation by one-electron oxidants.  相似文献   

13.
The neuronal NO synthase (nNOS) flavin domain, which has similar redox properties to those of NADPH-cytochrome P450 reductase (P450R), contains binding sites for calmodulin, FAD, FMN, and NADPH. The aim of this study is to elucidate the mechanism of activation of the flavin domain by calcium/calmodulin (Ca(2+)/CaM). In this study, we used the recombinant nNOS flavin domains, which include or delete the calmodulin (CaM)-binding site. The air-stable semiquinone of the nNOS flavin domains showed similar redox properties to the corresponding FAD-FMNH(&z.ccirf;) of P450R. In the absence or presence of Ca(2+)/CaM, the rates of reduction of an FAD-FMN pair by NADPH have been investigated at different wavelengths, 457, 504 and 590 nm by using a stopped-flow technique and a rapid scan spectrophotometry. The reduction of the oxidized enzyme (FAD-FMN) by NADPH proceeds by both one-electron equivalent and two-electron equivalent mechanisms, and the formation of semiquinone (increase of absorbance at 590 nm) was significantly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form of the enzyme was also rapidly reduced by NADPH. The results suggest that an intramolecular one-electron transfer between the two flavins is activated by the binding of Ca(2+)/CaM. The F(1)H(2), which is the fully reduced form of the air-stable semiquinone, can donate one electron to the electron acceptor, cytochrome c. The proposed mechanism of activation by Ca(2+)/CaM complex is discussed on the basis of that provided by P450R.  相似文献   

14.
Histamine dehydrogenase from Nocardioides simplex is a homodimer and belongs to the family of iron-sulfur flavoproteins having one [4Fe-4S] cluster and one 6-S-cysteinyl FMN per monomer. In the reductive titration with histamine, two-electron reduction occurred per monomer at pH<9, while single-electron reduction proceeded at pH>9. The substrate-reduced histamine dehydrogenase yielded an electron paramagnetic resonance spectral signal assigned to the flavin semiquinone. The signal intensity increased with pH up to pH 9 and reached a maximum at pH>9. These unique features are explained in terms of the redox potential of the cofactors, where the redox potential was evaluated over a pH range from 7 to 10 by using a spectroelectrochemical titration method for the flavin and cyclic voltammetry for the [4Fe-4S] cluster. The bell-type pH dependence of the enzymatic activity is also discussed in terms of the pH dependence of the centers’ redox potential.  相似文献   

15.
Enterococcus faecalis dihydroorotate dehydrogenase B is a heterodimer of 28 and 33 kDa encoded by the pyrK and pyrDb genes. Both subunits copurify during all chromatographic steps, and, as determined by HPLC, one FMN and one FAD are bound per heterodimer. The enzyme catalyzes efficient oxidation of 4-S-NADH by orotate. Isotope effect and pH data suggest that reduction of flavin by NADH at the PyrK site is only partially rate limiting with no kinetically significant proton transfer occurring in the reductive half-reaction; therefore, a group exhibiting a pK of 5.7 +/- 0.2 represents a residue involved in binding of NADH rather than in catalysis. The reducing equivalents are shuttled between the NADH-oxidizing flavin in PyrK and the orotate-reacting flavin in PyrDb, by iron-sulfur centers through flavin semiquinones as intermediates. A solvent kinetic isotope effect of 2.5 +/- 0.2 on V is indicative of rate-limiting protonation in the oxidative half-reaction and most likely reflects the interaction between the isoalloxazine N1 of the orotate-reducing flavin and Lys 168 (by analogy with L. lactis DHODase A). The oxidative half-reaction is facilitated by deprotonation of the group(s) with pK(s) of 5.8-6.3 and reflects either deprotonation of the reduced flavin or binding of orotate; this step is followed by hydride transfer to C6 and general acid-assisted protonation (pK of 9.1 +/- 0.2) at C5 of the product.  相似文献   

16.
T Iyanagi  S Watanabe  K F Anan 《Biochemistry》1984,23(7):1418-1425
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.  相似文献   

17.
The reduction of flavin in hepatic NADH-cytochrome b5 reductase by the hydrated electron (eaq-) was investigated by pulse radiolysis. The eaq- reduced the flavin of NADH-cytochrome b5 reductase to form the red semiquinone between pH 5 and 9. The spectrum of the red semiquinone differs from that of enzyme reduced by dithionite in the presence of NAD+. After the first phase of the reduction, conversion of the red to blue semiquinone was observed at acidic pH. Resulting products are the blue (neutral) or red (anionic) semiquinone or a mixture of the two forms. The pK value for this flavin radical was approximately 6.3. Subsequently, the semiquinone form reacted by dismutation to form the oxidized and the fully reduced forms of the enzyme with a rate constant of 1 x 10(3) M-1 s-1 at pH 7.1. In the presence of NAD+, eaq- reacted with NAD+ to yield NAD(.). Subsequently, NAD. transferred an electron to NAD+-bound oxidized enzyme to form the blue and red semiquinone or mixture of the two forms of the enzyme, where pK value of this flavin radical was approximately 6.3. The blue semiquinone obtained at acidic pH was found to convert to the red semiquinone with a first order rate constant of 90 s-1, where the rates were not affected by pH or the concentration of NAD+. The final product is NAD+-bound red semiquinone of the enzyme.  相似文献   

18.
The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase   总被引:1,自引:0,他引:1  
Xanthine oxidoreductases (XOR), xanthine dehydrogenase (XDH, EC1.1.1.204) and xanthine oxidase (XO, EC1.2.3.2), are the best-studied molybdenum-containing iron-sulfur flavoproteins. The mammalian enzymes exist originally as the dehydrogenase form (XDH) but can be converted to the oxidase form (XO) either reversibly by oxidation of sulfhydryl residues of the protein molecule or irreversibly by proteolysis. The active form of the enzyme is a homodimer of molecular mass 290 kDa. Each subunit contains one molybdopterin group, two non-identical [2Fe-2S] centers, and one flavin adenine dinucleotide (FAD) cofactor. This review focuses mainly on the role of the two iron-sulfur centers in catalysis, as recently elucidated by means of X-ray crystal structure and site-directed mutagenesis studies. The arrangements of cofactors indicate that the two iron-sulfur centers provide an electron transfer pathway from molybdenum to FAD. However, kinetic and thermodynamic studies suggest that these two iron-sulfur centers have roles not only in the pathway of electron flow, but also as an electron sink to provide electrons to the FAD center so that the reactivity of FAD with the electron acceptor substrate might be thermodynamically controlled by way of one-electron-reduced or fully reduced state.  相似文献   

19.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

20.
Takashi Iyanagi  Isao Yamazaki 《BBA》1970,216(2):282-294
The mitochondrial NADH dehydrogenase catalyzes a one-electron reduction of quinones. Semiquinones thus formed have the hyperfine structures of their free anion radicals and are suggested to be detached from the enzyme. In the presence of suitable electron acceptors electron transfer occurs from the semiquinone to the acceptor. The mechanism of quinone reduction by spinach ferredoxin-NADP reductase is the same as that by the NADH dehydrogenase.

On the other hand, the NAD(P)H dehydrogenase (DT-diaphorase) prepared from liver soluble fraction catalyzes a typical two-electron reduction of quinones such as p-benzoquinone and 2-methyl-1,4-naphthoquinone. The mechanisms of one-electron and two-electron reduction of quinones are readily distinguishable by the use of an electron spin resonance spectrometer equipped with a flow apparatus and also by the use of an appropriate set of electron acceptors.

It is concluded that the reduction of quinones and oxygen by flavoproteins falls into three mechanistic categories: one-electron, two-electron and mixed-type reactions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号