首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An α-galactosidase fraction which hydrolyzes galactosyl(α1→4)galactosylceramide and 4-methylumbelliferyl-α-galactoside has been isolated from normal human plasma by affinity chromaography. It was partially separated into two enzymatically active proteins by isoelectric focusing or cellulose acetate electrophoresis. The protein fraction obtained by affinity chromatography of Fabry plasma also was divided into two proteins, but only the protein of slower electrophoretic mobility had detectable enzymatic activity. These results indicate that the accumulation of galactosyl(α1→4)galactosylceramide in certain organs in Fabry's disease is due to an alteration of a specific α-galactosidase.  相似文献   

2.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed.  相似文献   

3.
The glycosphingolipid composition of brain and visceral tissue from a patient with an unusual neurovisceral lipid storage disease, characterized by a lactosylceramide galactosyl hydrolase deficiency, was determined. Analyses of erythrocytes, plasma, bone marrow cells, urine sediment, and liver biopsy from the patient were compared with those of normal infantile controls. Abnormally high levels of lactosylceramide (GL-2a) were found in these samples. Subsequent studies on spleen, liver, kidney, lymph nodes, and adrenal gland confirmed this finding and clearly showed that the metabolism of hematoside (Gm3) and glucosylceramide (GL-1a) was also affected. The accumulation of GL-1a and Gm3 was most pronounced in spleen, but it was not of the order seen in the spleens of patients with Gaucher's disease that were studied for comparison. Since the disease was primarily neurological in nature, fresh-frozen brain was also studied. The level of GL-2a in gray matter was equal to that of galactosylceramide (GL-1b), and elevated amounts of GL-1a, asialo-Gm2, Gm2, and Gm3 were also found; the only major abnormality in white matter was the accumulation of GL-2a and lesser amounts of the gangliosides Gm3 and Gm2. Chemical and enzymic evidence suggests the use of the term "lactosylceramidosis" for this disease.  相似文献   

4.
Histone and casein phosphoprotein-kinase activities were determined in rat brain soluble fraction at various stages of development. Cyclic AMP -independent or basal histone kinase activity increased, whereas cyclic AMP -dependent activity decreased in whole soluble fraction with the age. On the contrary, whole soluble cyclic AMP -dependent and -independent casein kinases activities did not show any difference during development. The percentage of activation by cyclic AMP of histone kinase activity and [3H] cyclic- AMP binding activity in the soluble fraction decreased markedly during development. By DEAE-cellulose chromatography the histone kinase was separated mainly into 4 peaks; the fourth peak was strongly stimulated by cyclic AMP . Stimulation by cyclic AMP was higher in the 4-day-old rat brains than in the 9- and 30-day-old. In the 9-day-old rats the ratio of cyclic AMP -dependent histone kinase in respect to the cyclic AMP -independent enzyme was higher than in 4- and 30-day-old rats. Casein kinase activities in the brains of 9- and 30-day-old rats were separated by DEAE-cellulose chromatography into three peaks of which the third one was stimulated by cyclic AMP . Little, if any, difference was observed for casein kinase during the development. These results suggest that brain histone and casein kinase are different enzymes:  相似文献   

5.
A column of immobilized antibodies directed against pure human pancreatic carboxylic (cholesterol) ester hydrolase was used to purify in a single step the enzyme from human pancreatic juice as well as carboxylic-ester hydrolases from other species (rat, dog). This immunoaffinity method was also used for the purification of the related bile-salt-stimulated lipase from the human skim milk. The enzymes were homogeneous on SDS-PAGE. The yields obtained were always higher than those previously observed using either conventional or affinity columns. The human and dog carboxylic-ester hydrolases as well as the bile-salt-stimulated lipase, in contrast to the rat enzyme, are glycoproteins. From our results, it can be speculated that these enzymes, which differ in their molecular weight but not in their N-terminal sequences or amino-acid compositions, might have a similar proteic core with a molecular mass between 65 and 75 kDa. The difference in their respective molecular masses might result from a different level of glycosylation of pancreatic carboxylic-ester hydrolases (and milk bile-salt-stimulated lipase).  相似文献   

6.
Membrane preparations from striatum of pig brain contain endopeptidase activity towards iodoinsulin B-chain. Only 50% of the hydrolysis of insulin B-chain is inhibitable by phosphoramidon, and DEAE-cellulose chromatography can resolve the phosphoramidon-sensitive and -insensitive activities. The former activity (now designated 'endopeptidase-24.11') is responsible for hydrolysis of [D-Ala2,Leu5]enkephalin and is identical with an enzyme in brain that has previously been referred to as 'enkephalinase'. Pig striatal endopeptidase-24.11 has now been purified to homogeneity in a single step by immunoadsorbent chromatography using a monoclonal antibody. The overall purification was 23 000-fold, with a yield of 30%. The brain enzyme appears to be identical with kidney endopeptidase-24.11 in amino acid composition as well as by immunological and kinetic criteria. However, it differs slightly in apparent subunit size (Mr = 87 000), attributable to differences in glycosylation.  相似文献   

7.
Clonal cell lines derived from both spontaneous and chemically induced rat and mouse brain tumors were screened for their ability to incorporate H232SO4 into galactosyl(3-O-sulfate)ceramide (sulfatide). High levels of 35SO4 incorporation into sulfatide were found only in two of the mouse cell lines studied (G26-20 and -24). Tumors produced by subcutaneous injection of these cell lines into C57BL/6 mice were also unique in that they contained high levels of both sulfatide and galactosylceramide. The synthesis of large amounts of sulfatide and galactosylceramide by a clonal cell line of neurological origin suggests that the original tumor was of oligodendrocyte or Schwann cell origin. In common with a large number of mouse and rat astrocyte cell strains and their derived tumors, these glial cells lacked the ability to synthesize gangliosides such as monosialotetraglycosylceramide and disialotetraglycosylceramide (as judged by analytical and [3H]GlcNH2 incorporation studies). This appears to be a unique characteristic of neuroblastoma-derived cell strains such as N18, NB2a, and NB41A.  相似文献   

8.
Two genetically distinct acid beta-galactosidases are apparently involved in the hydrolysis of galactosylceramide in fibroblasts. These beta-galactosidases were activated by different bile salts. The classical galactosylceramidase (galactosylceramidase I, EC 3.2.1.46) was activated by sodium taurocholate, while the other galactosylceramidase (galactosylceramidase II) was activated by sodium cholate. The former was genetically lacking in globoid cell leukodystrophy (GLD) and the latter in GM1 gangliosidosis. Galactosylceramidase II cross-reacted with antibody raised against purified GM1 ganglioside beta-galactosidase (EC 3.2.1.23) from the human placenta. The purified beta-galactosidase had galactosylceramidase II activity, which was competitively inhibited by GM1 ganglioside. Thus, galactosylceramidase II seems to be identical to GM1 ganglioside beta-galactosidase and lactosylceramidase II. Galactosylceramidase II had a very low affinity for galactosylsphingosine. In the galactosylceramide-loading tests using fibroblasts from patients with GLD and GM1 gangliosidosis, both cell lines hydrolyzed the incorporated galactosylceramide, with lower rates than control fibroblasts but higher than the fibroblasts from patients with I-cell disease, in which both galactosylceramidase I and II were deficient. These results indicate that galactosylceramide is hydrolyzed by two genetically distinct beta-galactosidases and explain well that galactosylsphingosine but not galactosylceramide accumulates in the brain of patients with GLD.  相似文献   

9.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

10.
The epoxide hydrolase from Rhodotorula glutinis was isolated and initially characterized. The enzyme was membrane associated and could be solubilized by Triton X-100. Purification yielded an enzyme with sp. act. of 66 mol 1,2-epoxyhexane hydrolyzed min–1 mg–1 protein. The enzyme was not completely purified to homogeneity but, nevertheless, a major protein was isolated by SDS-PAGE for subsequential amino acid determination of peptide fragments. From sequence alignments to related enzymes, a high homology towards the active site sequences of other microsomal epoxide hydrolases was found. Molecular mass determinations indicated that the native enzyme exists as a homodimer, with a subunit molecular mass of about 45 kDa. Based upon these, this epoxide hydrolase is structurally related to other microsomal epoxide hydrolases.  相似文献   

11.
We measured the activity of several acid hydrolases of cultured oligodendrocytes prepared from adult bovine brain white matter to clarify the biochemical basis of bovine oligodendrocytes in vitro. Lysosomal enzyme activities were assayed by using 4-methylumbelliferyl glycosides as substrates. Lysosomal enzyme activities became higher at 8–11 days in vitro (DIV) than 4 DIV. The enrichment in acid hydrolase specific activities in oligodendrocytes may be associated with lysosomal origin of myelin-like membranes.  相似文献   

12.
Rat liver microsomal glycerol monoester hydrolase (EC 3.1.1.23) has been purified 130 fold. The enzyme has a molecular weight of about 60,000. An antibody raised against this enzyme in rabbit did not inhibit heparin-releasable liver lipase, which hydrolyses long-chain 1- and 2-monoglycerides effectively. This confirms an earlier conclusion, based on results obtained with an antibody raised against the latter enzyme, that the non-releasable and heparin-releasable liver enzymes are different proteins. The antibody against the liver microsomal glycerol monoester hydrolase, however, inhibited also the monoglyceridase activities of acetone powder extracts of rat small intestinal epithelial microsomes and rat epididymal fat pads, suggesting structural similarities between the endoplasmic reticulum hydrolases of various tissues. These findings also apply to pig where an antibody against adipose tissue lipases inhibits the monoglyceridase activities of small intestinal and liver microsomal acetone powder extracts.  相似文献   

13.
Two purified carboxylesterases that were isolated from a rat liver microsomal fraction in a Norwegian and a German laboratory were compared. The Norwegian enzyme preparation was classified as palmitoyl-CoA hydrolase (EC 3.1.2.2) in many earlier papers, whereas the German preparation was termed monoacylglycerol lipase (EC 3.1.1.23) or esterase pI 6.2/6.4 (non-specific carboxylesterase, EC 3.1.1.1). Antisera against the two purified enzyme preparations were cross-reactive. The two proteins co-migrate in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Both enzymes exhibit identical inhibition characteristics with Mg2+, Ca2+ and bis-(4-nitrophenyl) phosphate if assayed with the two substrates palmitoyl-CoA and phenyl butyrate. It is concluded that the two esterase preparations are identical. However, immunoprecipitation and inhibition experiments confirm that this microsomal lipase differs from the palmitoyl-CoA hydrolases of rat liver cytosol and mitochondria.  相似文献   

14.
15.
Acyl hydrolase activities have been purified from the leaves of Phaseolus multiflorus. The purification procedure involved heat treatment, DEAE-cellulose chromatography, Sephadex G-100 filtration and hexyl agarose chromatography. The elution pattern from hexyl agarose columns together with substrate competition experiments indicated the presence of two hydrolase enzymes. The first could hydrolyse oleoylglycerol and phosphatidylcholine while the second would deacylate glycosylglycerides and oleoylglycerol. Overall purification of both enzymes was ca 70-fold and the MW of the glycosylglyceride-hydrolysing enzyme was in the range 70–78000.  相似文献   

16.
1. NADPH-linked aldehyde reductase from pig, ox and rat brain exhibits non-linear reciprocal plots when partially purified enzyme preparations are studied. 2. In pig brain this non-linearity is due to the presence of two distinct aldehyde reductases, which can be separated by DEAE-cellulose chromatography. 3. These two enzymes can be distinguished by several criteria, including pH optima, Michaelis constants for substrates and their inhibitor sensitivity. 4. The probable role of these enzymes in the metabolism of the aldehydes derived from the biogenic amines is discussed.  相似文献   

17.
A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed.  相似文献   

18.
Profiling serine hydrolase activities in complex proteomes   总被引:10,自引:0,他引:10  
Kidd D  Liu Y  Cravatt BF 《Biochemistry》2001,40(13):4005-4015
Serine hydrolases represent one of the largest and most diverse families of enzymes in higher eukaryotes, comprising numerous proteases, lipases, esterases, and amidases. The activities of many serine hydrolases are tightly regulated by posttranslational mechanisms, limiting the suitability of standard genomics and proteomics methods for the functional characterization of these enzymes. To facilitate the global analysis of serine hydrolase activities in complex proteomes, a biotinylated fluorophosphonate (FP-biotin) was recently synthesized and shown to serve as an activity-based probe for several members of this enzyme family. However, the extent to which FP-biotin reacts with the complete repertoire of active serine hydrolases present in a given proteome remains largely unexplored. Herein, we describe the synthesis and utility of a variant of FP-biotin in which the agent's hydrophobic alkyl chain linker was replaced by a more hydrophilic poly(ethylene glycol) moiety (FP-peg-biotin). When incubated with both soluble and membrane proteomes for extended reaction times, FP-biotin and FP-peg-biotin generated similar "maximal coverage" serine hydrolase activity profiles. However, kinetic analyses revealed that several serine hydrolases reacted at different rates with each FP agent. These rate differences were exploited in studies that used the biotinylated FPs to examine the target selectivity of reversible serine hydrolase inhibitors directly in complex proteomes. Finally, a general method for the avidin-based affinity isolation of FP-biotinylated proteins was developed, permitting the rapid and simultaneous identification of multiple serine peptidases, lipases, and esterases. Collectively, these studies demonstrate that chemical probes such as the biotinylated FPs can greatly accelerate both the functional characterization and molecular identification of active enzymes in complex proteomes.  相似文献   

19.
Summary The cytosol fraction from rat midbrain was chromatographed on DEAE-cellulose with a linear NaCl gradient (0–0.3 M). Two peaks of protein kinase activity were obtained when assayed with either historic or casein. A similar elution profile of the kinase activity was obtained from rat heart. The first peaks from midbrain and heart were compared in terms of their dependency upon cAMP and sensitivity to the endogenous protein kinase inhibitor. Neither of the two substances had an effect on the activity of the brain kinase. Furthermore, the dissociability of the midbrain and heart enzymes in the presence of cAMP or histone was compared by DEAE-cellulose chromatography. The heart enzyme was dissociated into a catalytic subunit characteristic of a cAMP-dependent protein kinase, whereas the brain kinase was totally unaffected by the cAMP or histone. The results of these tests indicate that although the elution profiles from DEAE-cellulose are similar between midbrain and heart, the first peak from brain contains a protein kinase that appears to be cAMP independent.  相似文献   

20.
Cultured fibroblasts from patients with the lysosomal storage disease, mucolipidosis II, produce complex glycosylated lysosomal enzymes which are preferentially excreted presumably due to the absence of specific phosphomannosyl recognition residues needed for intracellular retention. Complex glycosylated hydrolases are also produced by fibroblasts from patients with mucolipidosis I but an abnormal excretion is not apparent in this disorder. Intra- and extracellular distribution, lectin binding, and specific endocytosis were criteria used to compare the properties of intra- and extracellular β-hexosaminidase derived from mucolipidosis I and normal fibroblast cultures. Mucolipidosis I fibroblasts did not hyperexcrete β-hexosaminidase when maintained in serum-free medium. Using the specifity of ricin binding to terminal galactosyl residues, the most galactosylated forms of the enzyme derived from mucolipidosis I cell extracts and culture fluids were found in the mucolipidosis I cell extracts (50% of total enzyme). Mucolipidosis I-excreted β-hexosaminidase which was eluted from ricin-120-Sepharose, was a high-uptake form in endocytosis experiments while unbound enzyme was a low-uptake form. These data suggest that β-hexosaminidase molecules contained phosphomanosyl residues necessary for receptor-mediated endocytosis as well as galactosyl residues on the same molecule. The co-existence of complex chains with high-mannose chains did not interfere with the phosphomannose-mediated endocytosis of β-hexosaminidase nor with the retention of endogenous enzyme. We can speculate that since complex oligosaccharide chains in the mucolipidosis I cellular enzyme persist due to a sialidase deficiency, more extensive sialylation of cellular enzyme in normal fibroblasts probably occurs at some point during post-translational processing. However, the presence of sialidase in normal cells initiates complex chain trimming in the lysosomes resulting in a less glycosylated end product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号