首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A standardized dichlorofluorescin (DCF) fluorometric assay capable of measuring radiation-induced oxidative stress was used to determine the effectiveness of protons and high-mass, high-atomic number (Z) and high-energy (HZE) particles to produce oxidative stress in vitro. Protons were found to be about equally as effective as X rays in the generation of oxidative stress in cultured cells. However, 56Fe-ion beams with energies of 1 GeV/nucleon and 5 GeV/nucleon were less effective than X rays or gamma rays in inducing dichlorofluorescin (DCFH) oxidation. The relatively lower slope values for the dose responses of HZE-particle radiation-induced DCFH oxidation indicate that the sensitivity of the DCF fluorometric assay is probably dependent on the linear energy transfer (LET) of the radiation beam.  相似文献   

2.
The goal of this study was to determine the amount of reactive oxygen species (ROS) that arises inside cells irradiated in medium containing blood serum using the 2'7'-dichlorofluorescein (DCF) assay. DCF fluorescence in cells and medium was recorded on an MF44 Perkin Elmer fluorimeter, and fluorescence in cells only was recorded on a Partec flow-through cytometer. Human larynx tumor HEp-2 cells and lympholeukosis P388 cells were irradiated with X rays at a dose rate of 1.12 Gy/min. The factors (temperature, pH, serum concentration) affecting the oxidation of 2'7'-dichlorofluorescin (DCFH) to DCF were studied, and errors in the dichlorofluorescein assay of ROS were minimized. The amount of ROS registered by the DCF assay in cells was found to depend on the concentration of serum in the medium during irradiation. In the presence of 10% serum, radiation had no effect on the amount of detectable ROS. The effect of radiation on the formation of intracellular ROS was almost completely abolished if the irradiated medium was removed immediately after radiation exposure. The increase in the formation of ROS in cells irradiated in medium with a low serum content is due mainly to the radiolytic products of water that arise in medium and oxidize DCFH located in cells.  相似文献   

3.
The present study was undertaken to standardize a dichlorofluorescein (DCF) assay for measurement of radiation-induced oxidation of dichlorofluorescin (DCFH) substrate in MCF-10 cells. This assay was highly sensitive and capable of detecting increased DCFH oxidation in the cells exposed to gamma radiation at doses as low as 1.5 cGy with linear dose-response curves. However, the slope of the dose-response curves varied considerably from one experiment to another and was influenced by the fluorescent substrate concentration and cell density. To make the assay reproducible so that results obtained from different experiments could be compared, a series of conversion factors and equations have been established to normalize the data for these variables. The results demonstrate that the DCF assay, as standardized in the present study, is highly reproducible with acceptable assay precision. The normalized results can be compared from one experiment to another even when the experiments were performed using different fluorescent substrate concentrations and/or cell densities. Since changes in DCFH oxidation may be related to changes that are indicative of oxidative stress in cells, this assay can be useful to quantify radiation-induced oxidative stress and evaluate the efficacy of antioxidant agents in protection against radiation-induced oxidative stress.  相似文献   

4.
Reactive oxygen species (ROS) have been implicated in many ionizing radiation-related phenomena, including bystander effects. The oxidation of 2'7'-dichlorofluorescin (DCFH) to fluorescent 2'7'-dichlorofluorescein (DCF) is commonly used for the detection of radiation-induced ROS. The DCF assay was adapted for efficient, systematic flow cytometry quantification of low-linear energy transfer (LET) gamma-radiation-induced ROS in vitro in Chinese hamster ovary (CHO) cells. This method is optimized for increased sensitivity to radiation-induced ROS and to discriminate against measurement of extracellular ROS. This method can detect a significant increase in ROS in cells exposed to gamma radiation at doses as low as 10 cGy. The antioxidants N-acetyl-cysteine and ascorbic acid (vitamin C) significantly reduced the amount of ROS measured in cells exposed to 5 Gy ionizing radiation. This method was used to measure the intracellular ROS in unirradiated CHO bystander cells co-cultured with low-LET-irradiated cells. No increase in ROS was measured in bystander cell populations co-cultured with the irradiated cells beginning 9 s after radiation exposure.  相似文献   

5.
The use of antioxidants to prevent intracellular free radical damage is an area currently attracting considerable research interest. The compound 2',7'-dichlorofluorescin diacetate (DCFH-DA) is a probe for intracellular peroxide formation commonly used in such studies. During our studies we unexpectedly found that incubation of Trolox, a water soluble vitamin E analog, with DCFH-DA in cell-free physiological buffers resulted in the deacetylation and oxidation of DCFH-DA to form the fluorescent compound, 2',7'-dichlorofluororescein (DCF). The reaction was time-, temperature-, and pH-dependent. Fluorescence intensity increased with an increase in either Trolox or DCFH-DA concentration. These results indicate that even at physiological pH, DCFH-DA can be deacetylated to form 2',7'-dichlorofluorescin (DCFH). DCFH can then be oxidized to DCF by abstraction of a hydrogen atom by the phenoxyl radical of Trolox. Exposure of the reaction mixture to 10 Gy of 60Co gamma radiation greatly increased production of DCF. Antioxidant compounds reported to “repair” the Trolox phenoxyl radical (e.g., ascorbic acid, salicylate) can also prevent the Trolox-induced DCFH-DA fluorescence. However, compounds that cannot repair the Trolox phenoxyl radical (e.g., catechin) or can themselves form a radical (e.g., uric acid, TEMPOL) either have no effect or can increase levels of DCF. These results demonstrate that experimental design must be carefully considered when using DCFH-DA to measure peroxide formation in combination with certain antioxidants.  相似文献   

6.
There have been several attempts to implicate reactive oxygen species in UVA-induced damage by loading cells with 2',7'-dichlorofluorescin (DCFH) and following the appearance of 2',7'-dichlorofluorescein (DCF), its highly fluorescent oxidation product. However, both DCF and DCFH have significant absorption in the 300-400 nm range so it is possible that photochemical reactions will occur in cells containing these dyes when they are irradiated with UVA. HaCaT keratinocytes loaded with DCFH were irradiated with 0, 1, 2, or 4 J/cm(2) UVA and DCF fluorescence was measured. A dose-dependent increase in DCF fluorescence was observed, with the cells exposed to 4 J/cm(2) UVA exhibiting an almost 10-fold increase over dark controls. However, there was no difference in cell viability, as measured by the MTS assay or LDH release, between the dark and the 4 J/cm(2) UVA-exposed groups. Furthermore, a large increase in DCF fluorescence was observed when a cell-free system containing DCF, DCFH, and horseradish peroxidase was UVA irradiated. As a control, keratinocytes loaded with DCFH were incubated in the dark with either exogenously added H(2)O(2) or 5-hydroxy-1,4-naphthoquinone (juglone), which redox cycles to generate superoxide (and H(2)O(2)). In both cases, the cells showed a concentration-dependent increase in DCF fluorescence and a concomitant decrease in viability. Our findings suggest that DCFH can not be used to detect the UVA-induced generation of reactive oxygen species in cells when the dye is present during exposure.  相似文献   

7.
The oxidation of 2',7'-dichlorodihydrofluorescein (2',7'-dichlorofluorescin, DCFH) to a fluorescent product, 2',7'-dichlorofluorescein (DCF), is commonly used to quantitatively measure oxidative stress in cells using a fluorescence microplate reader. However, many cell lines tend to grow non-uniformly in the wells. This non-uniform distribution results in a high degree of variability in the fluorescence signal and decreases the precision of the method. Also, samples treated in large culture plates, dishes or flasks cannot be assayed directly in fluorescence microplate readers. This study reports an improved DCF assay method that lyses cells with DMSO/PBS (90% dimethyl sulphoxide/10% phosphate buffered saline). Oxidative stress was induced with either hydrogen peroxide or an hypoxia-reoxygenation treatment. Cell lysis with DMSO/PBS resulted in highly stable fluorescence signals in comparison to Triton X-100/PBS lysed cells. The precision of DCF fluorescence measurements of DMSO/PBS lysed cells was much better than for attached cells measured directly in 96-well plates. While DCF fluorescence in PBS was strongly quenched by albumin, no quenching occurred in DMSO/PBS. In conclusion this study describes a more convenient and accurate method for measuring cellular oxidative stress that also makes it possible to assay cells treated in large culture plates.  相似文献   

8.
2',7'-Dichlorofluorescin (DCFH) is often employed to assess oxidative stress in cells by monitoring the appearance of 2',7'-dichlorofluorescein (DCF), its highly fluorescent oxidation product. We have investigated the photosensitized oxidation of DCFH in solution and elucidated the role played by singlet molecular oxygen (1O(2)) in this reaction. We used rose bengal (RB), protoporphyrin, and DCF as photosensitizers. Irradiation (550 nm) of RB (20 microM) in 50 mM phosphate (pH 7.4) in the presence of DCFH (50 microM) resulted in the rapid formation of DCF, measured as an increase in its characteristic absorbance and fluorescence. The oxidation rate was faster in deoxygenated solution, did not increase in D(2)O, and even increased in the presence of sodium azide. The presence of antioxidants that react with 1O(2), thus removing oxygen, accelerated DCF formation. Such results eliminate any potential direct involvement of 1O(2) in DCF formation, even though DCFH is an efficient (physical) quencher of 1O(2) (k(q) = 1.4 x 10(8) M(-1)s(-1) in methanol). DCF is also a moderate photosensitizer of 1O(2) with a quantum yield of circa phi = 0.06 in D(2)O and phi = 0.08 in propylene carbonate, which unequivocally indicates that DCF can exist in a triplet state upon excitation with UV and visible light. This triplet can initiate photo-oxidization of DCFH via redox-and-radical mechanism(s) similar to those involving RB (vide supra). Our results show that, upon illumination, DCF can function as a moderate photosensitizer initiating DCFH oxidation, which may prime and accelerate the formation of DCF. We have also shown that, while 1O(2) does not contribute directly to DCF production, it can do so indirectly via reaction with cellular substrates yielding peroxy products and peroxyl radicals, which are able to oxidize DCFH in subsequent dark reactions. These findings suggest that DCFH should not be regarded as a probe sensitive to singlet molecular oxygen, and that care must be taken when using DCFH to measure oxidative stress in cells as a result of both visible and UV light exposure.  相似文献   

9.
2',7'-Dichlorodihydrofluorescein (DCFH2) is one of the most widely used probes for detecting intracellular oxidative stress, but requires a catalyst to be oxidized by hydrogen peroxide or superoxide and reacts nonspecifically with oxidizing radicals. Thiyl radicals are produced when many radicals are "repaired" by thiols, but are oxidizing agents and thus potentially capable of oxidizing DCFH2. The aim of this study was to investigate the reactivity of thiol-derived radicals toward DCFH2 and its oxidized, fluorescent form 2',7'-dichlorofluorescein (DCF). Thiyl radicals derived from oxidation of glutathione (GSH) or cysteine (CysSH) oxidized DCFH2 with rate constants at pH 7.4 of approximately 4 or approximately 2x10(7) M(-1) s(-1), respectively. Both the rates of oxidation and the yields of DCF were pH-dependent. Glutathione-derived radicals interacted with DCF, resulting in the formation of DCFH* absorbing at 390 nm and loss of fluorescence; in contrast, cysteine-derived radicals did not cause any depletion of DCF fluorescence. We postulate that the observed apparent difference in reactivity between GS* and CysS* toward DCF is related to the formation of carbon-centered, reducing radicals from base-catalyzed isomerization of GS*. DCF formation from interaction of DCFH2 with GS* was inhibited by oxygen in a concentration-dependent manner over the physiological range. These data indicate that in applying DCFH2 to measure oxidizing radicals in biological systems, we have to consider not only the initial competition between thiols and DCFH2 for the oxidizing radicals, but also subsequent reactions of thiol-derived radicals, together with variables--including pH and oxygen concentration--which control thiyl radical chemistry.  相似文献   

10.
11.
2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is commonly used to detect the generation of reactive oxygen intermediates and for assessing the overall oxidative stress in toxicological phenomenon. It has been suggested that DCFH-DA crosses the cell membrane, subsequently undergoing deacetylation by intracellular esterases. The resulting 2',7'-dichlorodihydrofluorescein (DCFH) is proposed to react with intracellular hydrogen peroxide or other oxidizing ROS to give the fluorescent 2',7'-dichlorofluorescein (DCF). Using an NMR chemical shift-polarity correlation, we have determined that DCFH-DA and DCFH are located well within the lipid bilayer and certainly not at the interface. These results, therefore, put into serious question the proposed ability of DCFH to come in contact with the aqueous phase and thereby interact with aqueous intracellular ROS and components. However, H2O2 and superoxide can cross or at least penetrate the lipid bilayer and react with certain lipophilic substrates. This may well describe the mode of reaction of these and other ROS with DCFH.  相似文献   

12.
The oxidation of 2'-7'-dichlorofluorescin (DCFH) to the fluorescent 2'-7'-dichlorofluorescein (DCF) by horseradish peroxidase (HRP) was investigated by fluorescence, absorption, and electron spin resonance spectroscopy (ESR). As has been previously reported, HRP/H2O2 oxidized DCFH to the highly fluorescent DCF. However, DCF fluorescence was still observed when H2O2 was omitted, although its intensity was reduced by 50%. Surprisingly, the fluorescence increase, in the absence of exogenous H2O2, was still strongly inhibited by catalase, demonstrating that H2O2 was present and necessary for DCF formation. H2O2 was apparently formed during either chemical or enzymatic deacetylation of 2'-7'-dichlorofluorescin diacetate (DCFH-DA), probably by auto-oxidation. Spectrophotometric measurements clearly showed that DCFH could be oxidized either by HRP-compound I or HRP-compound II with the obligate generation of the DCF semiquinone free radical (DCF*-). Oxidation of DCF*- to DCF by oxygen would yield superoxide (O2*-). ESR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of both superoxide and hydroxyl radicals in the DCFH/H2O2/HRP system. Both radicals were also detected in the absence of added H2O2, although the intensities of the resultant adducts were decreased. This work demonstrates that DCF fluorescence cannot be used reliably to measure O2*- in cells because O2*- itself is formed during the conversion of DCFH to DCF by peroxidases. The disproportionation of superoxide forms H2O2 which, in the presence of peroxidase activity, will oxidize more DCFH to DCF with self-amplification of the fluorescence. Because the deacetylation of DCFH-DA, even by esterases, can produce H2O2, the use of this probe to measure H2O2 production in cells is problematic.  相似文献   

13.
The oxidation of 2′,7′-dichlorodihydrofluorescein (2′,7′-dichlorofluorescin, DCFH) to a fluorescent product, 2′,7′-dichlorofluorescein (DCF), is commonly used to quantitatively measure oxidative stress in cells using a fluorescence microplate reader. However, many cell lines tend to grow non-uniformly in the wells. This non-uniform distribution results in a high degree of variability in the fluorescence signal and decreases the precision of the method. Also, samples treated in large culture plates, dishes or flasks cannot be assayed directly in fluorescence microplate readers. This study reports an improved DCF assay method that lyses cells with DMSO/PBS (90% dimethyl sulphoxide/10% phosphate buffered saline). Oxidative stress was induced with either hydrogen peroxide or an hypoxia-reoxygenation treatment. Cell lysis with DMSO/PBS resulted in highly stable fluorescence signals in comparison to Triton X-100/PBS lysed cells. The precision of DCF fluorescence measurements of DMSO/PBS lysed cells was much better than for attached cells measured directly in 96-well plates. While DCF fluorescence in PBS was strongly quenched by albumin, no quenching occurred in DMSO/PBS. In conclusion this study describes a more convenient and accurate method for measuring cellular oxidative stress that also makes it possible to assay cells treated in large culture plates.  相似文献   

14.
A standardized four-step assay for the flow cytometric determination of the oxidative activity of human polymorphonuclear leukocytes (PMNL) from normal human individuals and from septic patients was developed, using 2,7-dichlorofluorescin-diacetate (DCFH-DA) as indicator for the intracellular formation of H2O2 and free radicals. Spontaneous H2O2 and free radical formation was measured by preincubation of buffy coat PMNLs from fresh peripheral venous blood at 37 degrees C and pH 7.4 with 10 microM DCFH-DA. Intracellular peroxidase activity was determined by addition of 1 mM external H2O2 to this assay. A maximum of granulocyte oxidative burst activity was elicited by the addition of 150 nM phorbol-myristate-acetate (PMA). A physiological burst was generated by incubating buffy coat PMNLs together with E. coli bacteria. The DNA of dead cells was in all instances simultaneously counterstained with propidium iodide (PI). Quiescent or H2O2 or bacteria treated granulocytes moved as a single cell cluster to higher fluorescences. Stimulation with PMA, in contrast, generated always a bimodal distribution of granulocyte fluorescence with the high activity cell cluster being approximately sevenfold more active than the low activity cell cluster. Roughly half of the granulocytes in normal individuals had high fluorescence. An increase of the high activity granulocytes was observed in septic patients. Model experiments with the nonfluorescent DCFH-DA cleavage product DCFH (2,7-dichlorofluorescin) showed that DCFH was quickly photo-oxidized to fluorescent DCF (2,7-dichlorofluorescein) by UV-light and to a lower degree by daylight. DCFH even slowly autooxidized in the dark.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Oxidative stress and the generation of reactive oxygen species (ROS) have been implicated in the pathogenesis of cellular damage. These events have usually been reported in terms of oxidation of a reporter molecule such as 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA). Treatment of HeLa cells with hemin or metalloporphyrins resulted in a rapid oxidation of DCFH in a time- and dose-dependent manner. This oxidation was inhibited by treatment of the cells with a large amount of superoxide dismutase and catalase, which is different from observations that these enzymes had no effect on the induction of heme oxygenase-1, a stress-induced protein, in hemin-treated cells. To examine the possibility that the oxidation of DCFH is independent of the generation of ROS, the oxidation was measured using hemoglobin-synthesizing erythroleukemia K562 cells. When K562 cells were treated with delta-aminolevulinic acid, a precursor of heme, oxidation of DCFH increased depending on the heme content in cells. Then DCFH-DA was oxidized directly with heme, hemoglobin, myoglobin and cytochrome c. These results suggest that oxidation of DCFH is not always related to the generation of ROS but may be related to heme content in cells.  相似文献   

16.
Formation of dichlorofluorescein (DCF), the fluorescent oxidation product of 2',7'-dichlorodihydrofluorescein (DCFH2), in cells loaded with the latter compound is often used to detect ROS formation. We previously found that exposure of DCFH2-loaded A549 cells to the Pseudomonas aeruginosa secretory product pyocyanin results in DCF formation, consistent with ROS production. However, since pyocyanin directly accepts electrons from NAD(P)H, we hypothesized that pyocyanin might directly oxidize DCFH2 to DCF without an ROS intermediate. Incubation of DCFH2 with pyocyanin rapidly resulted in DCF formation, the rate of which was proportional to the [pyocyanin] and was not inhibited by SOD or catalase. Phenazine methosulfate, a pyocyanin analog, was more effective than pyocyanin in generating DCF. Mitoxantrone and ametantrone also produced DCF. However, menadione, paraquat, plumbagin, streptonigrin, doxorubicin, daunorubicin, and 5-iminodaunorubicin did not. Pyocyanin, phenazine methosulfate, mitoxantrone, and ametantrone also oxidized dihydrofluorescein and 5- (and 6-) -carboxy-2',7'-dichlorodihydrofluorescein, whereas dihydrorhodamine was oxidized only by pyocyanin or phenazine methosulfate. Under aerobic conditions, the interaction of DCFH2 with pyocyanin or phenazine methosulfate (but not mitoxantrone or ametantrone) produced superoxide, as detected by spin trapping. Direct oxidation of the fluorescent probes needs to be controlled for when employing these compounds to assess ROS formation by biological systems exposed to redox active compounds.  相似文献   

17.
The generation of reactive oxygen species (ROS) under simulated solar radiation (UV-B: 0.30 Wm−2, UV-A: 25.70 Wm−2 and PAR: 118.06 Wm−2) was studied in the cyanobacterium Anabaena variabilis PCC 7937 using the oxidant-sensing fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). DCFH-DA is a nonpolar dye, converted into the polar derivative DCFH by cellular esterases that are nonfluorescent but switched to highly fluorescent DCF when oxidized by intracellular ROS and other peroxides. The images obtained from the fluorescence microscope after 12 h of irradiation showed green fluorescence from cells covered with 295, 320 or 395 nm cut-off filters, indicating the generation of ROS in all treatments. However, the green/red fluorescence ratio obtained from fluorescence microscopic analysis showed the highest generation of ROS after UV-B radiation in comparison to PAR or UV-A radiation. Production of ROS was also measured by a spectrofluorophotometer and results obtained supported the results of fluorescence microscopy. Low levels of ROS were detected at the start (0 h) of the experiment showing that they are generated even during normal metabolism. This study also showed that UV-B radiation causes the fragmentation of the cyanobacterial filaments which could be due to the observed oxidative stress. This is the first report for the detection of intracellular ROS in a cyanobacterium by fluorescence microscopy using DCFH-DA and thereby suggesting the applicability of this method in the study of in vivo generation of ROS.  相似文献   

18.
Localization and staining features of the oxidant-sensitive fluorescent probe 2'7'-dichlorofluorescin (DCFH) were evaluated in isolated cardiac muscle cells. Cardiomyocytes rapidly accumulated the probe and retained steady levels of DCFH and its highly fluorescent oxidized product dichlorofluorescein (DCF) in probe-free medium for 1.5 h. DCF was associated with mitochondria and was released by the proton ionophore carbonyl cyanide m-chlorophenylhydrazone but not by saponin, which permeabilizes the plasma membrane. A mitochondrial distribution of DCF was also suggested by experiments with the mitochondrial marker MitoTracker Red, in which quenching was observed between DCF and MitoTracker Red in live cells. Isolated cardiac mitochondria rapidly accumulated DCF, and high micromolar concentrations of the probe inhibited ADP-stimulated respiration rate. The study provides an information base essential for the interpretation and design of experiments with DCF as a marker of oxidative stress in cardiac muscle and reveals preferential localization of the probe in mitochondria.  相似文献   

19.
The aim of this work was to examine the intracellular generation of reactive oxygen species in skeletal muscle cells at rest and during and following a period of contractile activity. Intracellular generation of reactive oxygen species was examined directly in skeletal muscle myotubes using 2',7'-dichlorodihydrofluorescein (DCFH) as an intracellular probe. Preliminary experiments confirmed that DCFH located to the myotubes but was readily photoxidizable during repeated intracellular fluorescence measurements and strategies to minimize this were developed. The rate of oxidation of DCFH did not change significantly over 30 min in resting myotubes, but was increased by approximately 4-fold during 10 min of repetitive, electrically stimulated contractile activity. This increased rate was maintained over 10 min following the end of the contraction protocol. DCF fluorescence was distributed evenly throughout the myotube with no evidence of accumulation at any specific intracellular sites or localization to mitochondria. The rise in DCF fluorescence was effectively abolished by treatment of the myotubes with the intracellular superoxide scavenger, Tiron. Thus these data appear to represent the first direct demonstration of a rise in intracellular oxidant activity during contractile activity in skeletal muscle myotubes and indicate that superoxide, generated from intracellular sites, is the ultimate source of oxidant(s) responsible for the DCFH oxidation.  相似文献   

20.
We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluorescein) were used to detect H(2)O(2) and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p <.05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p <.05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p <.05). Intense electrical stimulation also increased (p <.05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N(G)-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H(2)O(2) and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H(2)O(2) and NO may constitute an important defense mechanism against the formation of intracellular (*)OH and (*)ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号