首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The use of ;marker' enzymes for investigating the contamination by endoplasmic reticulum of mitochondrial and synaptosomal (nerve-ending) fractions isolated from guinea-pig brain was examined. NADPH-cytochrome c reductase appeared to be satisfactory. With the synaptosomal preparation there was a non-occluded enzymic activity believed to arise from contaminating microsomes and an occluded form released by detergent, which probably was derived from some type of intraterminal smooth endoplasmic reticulum. 2. Isolated brain mitochondria, both intact and osmotically shocked, could not synthesize more labelled phosphatidylcholine from CDP-[Me-(14)C]choline or phosphoryl[Me-(14)C]choline than could be accounted for by microsomal contamination. They could synthesize only phosphatidic acid and diphosphatidylglycerol from a [(32)P]P(i) precursor and not nitrogen-containing phosphoglycerides or phosphatidylinositol. 3. The synaptosomal outer membrane and the intraterminal mitochondria could not synthesize phosphatidylcholine from CDP-[Me-(14)C]choline but the synaptic vesicles and probably the intraterminal ;endoplasmic reticulum' appeared to be capable of catalysing the incorporation of label from this substrate into their phospholipids. 4. Microsomal fractions and synaptosomes from guinea-pig brain could incorporate [Me-(14)C]choline into their phospholipids by a non-energy-requiring exchange process, which was catalysed by Ca(2+). Fractionation of the synaptosomes after such an exchange had taken place revealed that the label was predominantly in the intraterminal mitochondria and not associated with membranes containing NADPH-cytochrome c reductase. 5. On the intraperitoneal injection of [(32)P]P(i) into guinea pigs, incorporation of radioactivity into phosphatidylinositol and phosphatidic acid was much faster than into the nitrogen-containing phosphoglycerides. Mitochondria and microsomal fractions showed a roughly equivalent incorporation into individual phospholipids, and that into synaptosomes was appreciably less, whereas the phospholipids of myelin showed little (32)P incorporation up to 10h.  相似文献   

2.
Phospholipid synthesis and exchange in isolated liver cells   总被引:14,自引:11,他引:3       下载免费PDF全文
1. The [(32)P]phosphate incorporated into the phospholipids of isolated rat hepatic cells is present in phosphatidic acid and to a smaller extent in phosphatidylinositol. 2. The ability to synthesize nitrogen-containing phospholipids is restored by adding a liver supernatant fraction, and it is suggested that the metabolic deficiency is caused by the leakage of cytoplasmic enzymes of the synthetase system from the cells. 3. Fortified cell preparations were pulse-labelled with [(32)P]phosphate, [Me-(14)C]choline, [2-(14)C]ethanolamine and [U-(14)C]inositol and the subsequent fate of the labelled microsomal and mitochondrial phospholipids followed. 4. A fall in the specific radioactivity of microsomal phospholipids and a rise in that of mitochondrial phospholipids is interpreted as providing evidence of a transfer of labelled phospholipid molecules from the synthetic site (endoplasmic reticulum) to the mitochondrial membranes in the intact cells. 5. The formation of the phospholipids of mitochondrial membranes is discussed.  相似文献   

3.
The metabolism of phospholipids in mouse brain slices   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Slices of mouse brain grey matter were incubated with [32P]phosphate and [1-14C]acetate. Doubly labelled phospholipids were extracted from subcellular fractions prepared from the slices in a mixture of metabolic inhibitors, under conditions where there was negligible change in radioactive labelling during the preparation. Two tissue fractions were studied in detail; one contained a high proportion of mitochondria and the other was mainly microsomal. 2. In all tissue fractions the highest incorporations of both [32P]phosphate and [1-14C]acetate occurred into phosphatidylcholine. 3. After incubation for 1hr., the 32P/14C ratios for phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid in the mitochondrial fraction were similar to those in the microsomal fraction. 4. The 32P/14C ratios were similar in phosphatidylcholine and phosphatidylethanolamine and much lower than those in phosphatidic acid and phosphatidylinositol.  相似文献   

4.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data.  相似文献   

5.
1. Crude synaptosomal fractions (P2) from guinea-pig cerebral cortex were incubated in a Krebs-glucose medium containing labelled fatty acids and [3H]glucose. After the shortest incubation period (7.5 min) a high percentage (50-80%) of the total radioactive fatty acids was found in the P2 fractions. 2. After the incubation, the synaptosomal fractions were submitted to hypo-osmotic disruption and subsynaptosomal fractionation was carried out by using discontinuous-sucrose-gradient centrifugation. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were determined in fractions D (synaptic vesicles), E (microsomal preparation) and H (disrupted synaptosomes), as were the specific activities of a number of marker enzymes and the distribution of acetylcholine. 3. By using [14C]oleate, [14C]arachidonate, [3H]palmitate and [3H]glucose, the order to specific radioactivities in fraction D was found to be: phosphatidylinositol greater than phosphatidylcholine greater than phosphatidylserine greater than phosphatidylethanolamine. 4. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were always higher in fraction D than in fraction E. As fraction E had higher specific activities of several membrane marker enzymes, the enhanced labelling found in fraction D was considered to be localized in the synaptic vesicles. In this fraction, phosphatidylinositol made particularly large contributions to the total phospholipid labelling derived from [14C]arachidonate and [3H]glucose. 5. The similar labelling ratios of fatty acid/glucose in the phospholipids of fractions D and E, and the high specific radioactivities in the total phospholipid of the soluble fraction O, suggested intrasynaptosomal phospholipid transport.  相似文献   

6.
The phospholipid composition was studied in the whole rat retina, as well as in its subcellular fractions. A relative enrichment of phosphatidic acid, phosphatidylethanolamine, and phosphatidylserine was observed in rod outer segments (ROS) in comparison with entire retina: nuclear-photoreceptor inner segmentssynaptic bodies (P1) and synaptosomal-mitochondrial (P2) fractions. Phosphatidylcholine was the predominant phospholipid class found in all subcellular fractions analyzed. The microsomal fraction was relatively enriched in phosphatidic acid and in phosphatidylinositol. In addition, the rat eye has been used as an in vivo system to study membrane lipid synthesis. After intravitreal injections of [2-3H]glycerol a rapid labeling of retinal glycerolipids took place. Up to 120 min after injection only the glycerol backbone of lipids was labeled. Phosphatidic acid and diacylglycerol displayed rapid rates of synthesis and breakdown. Fastest rates of labeling were attained by phosphatidylcholine followed by phosphatidylinositol. Differences were found when in vitro labeling by [2-3H]glycerol was compared with intravitreal injections. Labeling of phospholipids of subcellular fractions by intravitreally injected [2-3H]glycerol showed that most of the label accumulated in microsomal phosphatidylcholine and phosphatidylinositol. Diacylglycerols and phosphatidylethanolamine also took up 10 and 20% respectively of the precursor. It is concluded that the rat eye is a useful experimental model to study synthesis and metabolism of membrane lipids in the retina.  相似文献   

7.
The formation of phosphatidic acid from sn-glycerol 3-phosphate was studied in neuronal nuclear fraction N1 and a microsomal fraction P3, isolated from cerebral cortices of 15-day-old rabbits. Two assays were used, employing dithiothreitol, MgCl2, NaF and (A) sn-glycerol 3-phosphate, [14C]oleate, ATP and CoA or (B) sn-[3H]glycerol 3-phosphate and oleoyl-CoA. In both assays fraction N1 had specific rates of phosphatidic acid labelling (expressed per mumol phospholipid in the fraction) which were 5- to 6-times the corresponding values for P3. In contrast to N1, the formation of phosphatidic acid by fraction P3 was more sensitive to inhibition at high concentrations of oleoyl-CoA and was greatly dependent upon the presence of NaF. In the absence of this salt, P3 showed decreased phosphatidate formation and increased levels of radioactive monoacylglycerols. Using cerebral cortex, rough (R) and smooth (S) microsomal fractions were prepared, as was a microsomal fraction P from isolated nerve cell bodies. P had specific rates of phosphatidic acid labelling which were 2-3 times the values for P3, but were about 50% of the N1 values. This indicates a concentration of phosphatidate synthesis in the nucleus within the nerve cell. Specific rates for fraction R were higher and were similar to those of N1. In S, P3 and R the specific rates of phosphatidic acid synthesis paralleled specific RNA contents and indicated a location for phosphatidic acid synthesis within the rough endoplasmic reticulum.  相似文献   

8.
A respiratory-competent wild-type strain and a nuclear isogenic, mitochondrial DNA-less, petite mutant strain of Saccharomyces cerevisiae were grown under conditions of catabolite repression in batch cultures and under conditions of catabolite derepression in chemostat cultures. Subcellular fractions were isolated and the capacity of these fractions to incorporate sn-[2-3H]glycerol 3-phosphate into phospholipids was studied. Neither catabolite repression nor loss of mitochondrial DNA appreciably altered the total in vitro lipid synthesized by mitochondrial fractions during the incubation. Mitochondria isolated from catabolite-derepressed wild-type and petite cells had approximately the same specific activity in vitro for the synthesis of phosphatidylinositol. phosphatidic acid, phosphatidylethanolamine, phosphatidylserine, and neutral lipids. Mitochondria isolated from the petite cells retained the capacity to synthesize phosphatidylglycerol and diphosphatidylglycerol, although the synthesis of these phospholipids was far less extensive than that by the mitochondria isolated from the wild-type cells. In both cases, mitochondria prepared from catabolite-repressed cells synthesized a greater proportion of phosphatidylserine than did mitochondria from catabolite-derepressed cells. The proportions of phospholipid species synthesized in vitro by the microsomal fractions studied were not grossly affected by catabolite repression or loss of mitochondrial DNA.  相似文献   

9.
The fatty acid composition and content of phosphatidylinositol, phosphatidylserine and phosphatidic acid have been studied during the early development of toad embryos. Acidic phospholipids have been analyzed in whole oocytes and embryos and in the following subcellular fractions: yolk platelets, mitochondria and microsomes. Also cardiolipin, a mitochondrial phospholipid, has been analyzed. Gastrula stage embryos have shown, mainly in the mitochondrial fraction, an increase in the content of phosphatidic acid, phosphatidylserine and phosphatidylinositol with respect to unfertilized oocytes. Changes in the distribution of acyl groups of phosphatidic acid have been detected when different subcellular fractions are compared. On the other hand, the phosphatidylserine composition remains unmodified. Arachidonate and stearate are the principal components of phosphatidylinositol. Cardiolipin shows the same composition up to gastrulation and linoleate comprises about 50% of the total acyl groups.  相似文献   

10.
Isolated intact pea chloroplasts synthesized phosphatidylglycerol from either [14C]acetate or [14C]glycerol 3-phosphate. Both time-course and pulse-chase labeling studies demonstrated a precursor-product relationship between newly synthesized phosphatidic acid and newly synthesized phosphatidylglycerol.

The synthesis both of CDP-diacylglycerol from exogenous phosphatidic acid and CTP, and of phosphatidylglycerol from exogenous CDP-diacylglycerol and glycerol 3-phosphate, could be assayed in fractions obtained from disrupted chloroplasts. Moreover, the enzymes catalyzing these reactions were localized in the inner envelope membrane. Exogenous phosphatidic acid was incorporated into phosphatidylglycerol, but only following its incorporation into CDP-diacylglycerol. Finally, radio-active phosphatidic acid synthesized in the envelope membranes from [14C]palmitoyl-ACP and 1-oleoyl-glycerol 3-phosphate was sequentially incorporated into labeled CDP-diacylglycerol and phosphatidylglycerol upon the addition of appropriate substrates and cofactors. Thus, we have demonstrated that (a) the synthesis of phosphatidylglycerol in chloroplasts occurs by the pathway: phosphatidic acid → CDP-diacylglycerol →→ phosphatidylglycerol, and (b) phosphatidylglycerol synthesis is located in the inner envelope membrane.

  相似文献   

11.
The acyltransferases that catalyze the synthesis of phosphatidic acid from labelled sn-[14C]glycero-3-phosphate and fatty acyl carnitine or coenzyme A derivatives have been shown to be present in both isolated mitochondria and microsomes from rat liver. The major reaction product was phosphatidic acid in both subcellular fractions. A small quantity of lysophosphatidic acid and neutral lipids were produced as by-products. Divalent cations had significant effects on both mitochondrial and microsomal fractions in stimulating acylation using palmitoyl CoA, but not when palmitoyl carnitine was used as the acyl donor. Palmitoyl CoA and palmitoyl carnitine could be used for acylation by both mitochondria and microsomes. Mitochondria were more permeable to palmitoyl carnitine and readily used it as the substrate for acylation. On the other hand, microsomes yielded a better rate with palmitoyl CoA and the rate of acylation from palmitoyl carnitine in microsomes was correlated with the degree of mitochondrial contamination. The enzymes were partially purified from Triton X-100 extracts of subcellular fractions. Based on the differences of substrate utilization, products formed, divalent cation effects, molecular weights, and polarity, the mitochondrial and microsomal acyltransferases appeared to be different enzymes.  相似文献   

12.
1. Nerve cell bodies were isolated in bulk from cerebral cortices of 15 day-old rabbits after intrathecal injections of [3H]plamitate, [3H]oleate or [3H]arachidonate and [14C]glycerol. 2. Nuclear, microsomal and two mitochondrial fractions were isolated from homogenates of the radioactively labelled nerve cell bodies by using differential and discontinuous-gradient centrifugation. 3. After 7.5min in vivo, a high percentage (>80%) of the total 3H-labelled fatty acid radioactivity was found in the membrane fractions of the nerve cell bodies, whereas after 60min in vivo 50% of the total [14C]glycerol radioactivity was found in the high-speed supernatant. 4. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, and the radioactivity in neutral lipid and non-esterified fatty acid fractions were determined in the four subfractions, as were the distributions of several marker enzymes and nucleates. 5. With respect of 3H-labelled fatty acid, the phospholipids of the nuclear fraction had the highest specific radioactivities of the four subfractions. However, for [14C]glycerol labelling, generally the 14C specific radioactivities for individual phospholipids were comparable in the four subfractions. This latter observation suggests transport of phospholipids synthesized de novo between membranes of the nerve cell body. 6. Double-labelling experiments demonstrated that individual phospholipids and the combined neutral lipids of the nuclear fraction had higher labelling ratios of 3H-labelled fatty acid/[14C]glycerol than did the corresponding lipids of the microsomal or mitochondrial fractions. 7. On the basis of the labelling results and the marker studies, it is proposed that it is indeed the nuclei of the nuclear fraction that have these lipids highly labelled with 3H-labelled fatty acid, and the existence of nuclear acyl transferases that are responsible for this fatty acid incorporation is suggested.  相似文献   

13.
Phospholipid composition and 32P metabolism were studied in oocytes and early developing embryos of the toad, Bufo arenarum, Hensel. The content and distribution of phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, sphingomyelin, phosphatidylserine, and diphosphatidylglycerol in embryos, whole oocytes, and the subcellular fractions of both were determined. Phosphatidylcholine and phosphatidylethanolamine were the major constituents of yolk platelet. Diphosphatidylglycerol was confined to the mitochondrial fraction, where it represented about 7% of the total phosphoacylglycerols. Relatively large amounts of sphingomyelin were found in microsomal and postmicrosomal supernatants. After in vivo labeling with 32P, the early development of individual phospholipids in subcellular fractions and in whole eggs was followed. The greatest uptake was found in mitochondrial and yolk platelet fractions. A steady increase in the amount of 32P present in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol was seen in the whole embryo from oocyte to late gastrula stage and in all subcellular fractions. Phosphatidic acid exhibited a slight decrease in specific activity, except in the yolk platelet fraction. This high 32P incorporation would indicate a rapid and uneven polar headgroup turnover determined by phospholipid class and subcellular fraction. At the same time, the phospholipid content of the subcellular fractions studied remained unchanged during early embryogenesis. Moreover, 32P was actively incorporated into the individual phospholipids in the absence of measurable net synthesis.  相似文献   

14.
The synthesis of lipids and acyl thioesters was studied in microsomal preparations from germinating pea (Pisum sativum cv. Feltham First) seeds. Under conditions of maximal synthesis (in the presence of exogenous acyl-carrier protein) acyl-acyl-carrier proteins accounted for about half the total incorporation from [14C]malonyl-CoA. Decreasing the concentrations of exogenous acyl-carrier protein lowered the overall synthesis of fatty acids by decreasing, almost exclusively, the radioactivity associated with acyl-acyl-carrier proteins. A time-course experiment showed that acyl-acyl-carrier proteins accumulated most of the radioactive label at the beginning of the incubation but, eventually, the amount of radioactivity in that fraction decreased, while a simultaneous increase in the acyl-CoA and lipid fractions was noticed. Addition of exogenous CoA (1 mM) produced a decrease of total incorporation, but an increase in the radioactivity incorporated into acyl-CoA. The microsomal preparations synthesized saturated fatty acids up to C20, including significant proportions of pentadecanoic acid and heptadecanoic acid. Synthesis of these 'odd-chain' fatty acids only took place in the microsomal fraction. In contrast, when the 18,000g supernatant (containing the microsomal and soluble fractions) was incubated with [14C]malonyl-CoA, the radioactive fatty acid and acyl classes closely resembled the patterns produced by germinating in the presence of [14C]acetate in vivo. The results are discussed in relation to the role of acyl thioesters in the biosynthesis of plant lipids.  相似文献   

15.
Lysophosphatidic acid stimulated several-fold the formation of docosahexaenoyl-phosphatidic acid from 14C-labeled docosahexaenoic acid (22:6 (n-3] in the bovine retina. 1-Palmitoyl- and 1-oleoyl-sn-glycerol 3-phosphate were the preferred acceptors. Most of the activity was localized in the 105 000 X g microsomal fraction. Despite the very high content of 22:6 in the phospholipids of photoreceptor membranes, only about 1% of the microsomal activity was found in discs isolated from rod outer segments. The newly synthesized docosahexaenoyl-phosphatidic acid was further metabolized to diacylglycerols, triacylglycerols, phosphatidylcholine and phosphatidylserine. The de novo synthesis of docosahexaenoyl-phosphatidylcholine was stimulated by 1 mM CDPcholine. Lysophosphatidic acid and lysophosphatidylcholine up to 50 microM do not compete with each other for 22:6 in the formation of their respective diacylated lipids. This suggests that this fatty acid is introduced into phosphatidic acid and phosphatidylcholine via different acylation systems. We conclude that, in addition to the deacylation-acylation cycle, there is also an active pathway for the acylation of 22:6 into glycerolipids during the de novo biosynthesis of phosphatidic acid.  相似文献   

16.
Incorporation of [1-14C]palmitic (16:0) and [1-14C]linoleic (18:2 omega 6) acids into microsomal membranes of proximal (jejunum) and distal (ileum) regions of rat small intestine was investigated, and the lipid composition, including fatty acid profiles of membrane phospholipids, was determined. Jejunal microsomes contained significantly higher amounts of total phospholipids, phosphatidylcholine, and phosphatidylinositol, and lower amounts of cholesterol and sphingomyelin when compared with ileal microsomes. Jejunal microsomal phospholipids contained higher levels of stearic (18:0), 18:2 omega 6, and eicosapentaenoic (20:5 omega 3) acids followed by reduced levels of oleic (18:1 omega 9), arachidonic (20:4 omega 6), and docosahexaenoic (22:6 omega 3) acids when compared with those from the ileum, except for phosphatidylinositol where no significant difference between 20:4 omega 6 content of each site was observed. In both jejunal and ileal microsomes, incorporation of [1-14C]18:2 omega 6 was significantly higher than that of [1-14C]16:0. Incorporation of both [1-14C]16:0 and [1-14C]18:2 omega 6 was significantly higher in jejunal microsomal lipid fractions (phospholipids, diacylglycerols, triacylglycerols) when compared with the ileal microsomal fraction. These data suggest that (1) jejunal and ileal microsomal membranes differ from each other in terms of lipid composition and lipid synthesis, (2) site variations in the specificity of acyltransferases for different fatty acids exist, and (3) higher delta 9-, delta 6-, delta 5-, and delta 4-desaturase activities exist in ileal compared with jejunal enterocytes.  相似文献   

17.
Rat brain microsomal membranes were fused to liposomes prepared with several pure lipids, namely, phosphatidylserine, phosphatidylinositol, phosphatidic acid, and mixtures of phosphatidic acid and phosphatidylcholine or phosphatidylethanolamine. The fusion between liposomes and microsomes was measured by the octadecyl rhodamine B chloride method. The extent and other properties of fusion largely depend on the lipid used to prepare liposomes; phosphatidic acid and phosphatidylinositol fuse more extensively than other lipid classes. The activity of serine base exchange is affected by the fusion between rat brain microsomes and lipids. It is strongly inhibited by phosphatidylserine, but it is activated by phosphatidic acid. The inhibition produced by phosphatidylserine on its own synthesis is proposed as a mechanism for controlling the formation of phosphatidylserine in rat brain microsomes.  相似文献   

18.
Submitochondrial membrane fractions from yeast that are enriched in inner and outer membrane contact sites were analyzed with respect to their lipid composition. Characteristic features were the significantly reduced content of phosphatidylinositol, the decreased amount of phosphatidylcholine, and the enrichment in phosphatidylethanolamine and cardiolipin. Coisolation of phosphatidylserine synthase with the outer membrane portion and enrichment of phosphatidylserine decarboxylase in the inner membrane portion of isolated contact sites provided the basis for a metabolic assay to study phosphatidylserine transfer from the outer to the inner mitochondrial membrane via contact sites. The efficient conversion to [3H]phosphatidylethanolamine of [3H]phosphatidylserine synthesized from [3H]serine in situ supports the notion that mitochondrial membrane contact sites are zones of intramitochondrial translocation of phosphatidylserine.  相似文献   

19.
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-(14)C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C(18) and C(20) fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Delta(11:12) isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Delta(11:12) isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C(16) and C(18) monoenoic acids; synthesis of C(20) acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction.  相似文献   

20.
The species pattern of phosphatidic acid, diacylglycerol and phosphatidylcholine synthesized from [14C]glycerol 3-phosphate was measured using a newly developed HPLC technique yielding 13 molecular species. A direct comparison of these species patterns presupposes determination of the lipolytic activity of lung microsomes. The lipolytic activity was quantitatively determined by measuring the changes of the endogenous concentration of diacylglycerol, triacylglycerol and free fatty acids. The species pattern of endogenous diacylglycerol measured in the time-course of lipolysis did not show any changes up to an incubation period of 20 min, suggesting that the lipolytic activity showed only a very low selectivity for individual substrate species. Diisopropylfluorophosphate (5 mumol/mg microsomal protein) strongly decreased the lipolytic activities as well as the microsomal phosphatidate phosphohydrolase activity, as measured by means of exogenous phosphatidic acid, and also the generation of phosphatidic acid from [14C]glycerol 3-phosphate. In lung microsomes, labeled phosphatidic acid and diacylglycerols were synthesized from the endogenous free fatty acids and sn-[14C]glycerol 3-phosphate, which had previously been added. By addition of CDPcholine to the prelabeled microsomes the synthesis of phosphatidylcholine was measured. After hydrolysis of phosphatidic acid and phosphatidylcholine with cytoplasmatic phosphatidate phosphohydrolase or phospholipase C, respectively, the de novo synthesized species patterns of these two lipids and of the diacylglycerol were determined. Comparison of the species pattern of de novo synthesized phosphatidic acid with that of diacylglycerol largely showed the same distribution of radioactivity among the individual species, except that the relative proportion of label was higher in the 16:0/16:0 and 16:0/18:0 species of phosphatidic acid and lower in the 16:0/20:4 and 18:0/20:4 species than in the corresponding species of diacylglycerol. The species pattern of de novo-synthesized diacylglycerol showed no differences from that of the phosphatidylcholine synthesized from it. From this result we concluded that the cholinephosphotransferase of lung microsomes is nonselective for individual species of the diacylglycerol substrate. The 16:0/18:1 and 16:0/18:2 species of phosphatidic acid, diacylglycerol and phosphatidylcholine showed a higher synthesis rate than their 18:0 counterparts, whereas the 16:0 or 18:0 analogues of species containing 20:4 and 22:6 fatty acids showed nearly the same synthesis rates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号