首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tucker RP  Tran H  Gong Q 《Protoplasma》2008,234(1-4):97-101
Microtubules are the primary cytoskeletal constituent of extending neurites. We used antisense morpholinos to knock down expression of neuron-specific Class III beta tubulin in the right half of the neural tube of chicken embryos in ovo. There was a significant (p < 0.01) reduction in the number of Class III beta tubulin immunostained interneurons 24 h following electroporation of the morpholinos when compared with the contralateral side of the neural tube. However, neural crest-derived sensory neurons labeled with the fluorescently tagged morpholinos developed distinct processes. Moreover, there was no significant difference in the number of interneurons labeled on either side of the neural tube with a second marker of developing neurons, anti-microtubule associated protein (MAP) 1b. Neural tubes were also excised and dissociated following antisense or control morpholino electroporation. The resulting neurons were cultured for 48 h and immunostained with anti-Class III beta tubulin and anti-MAP 1b. Neurons that had taken up the antisense morpholino had significantly shorter neurites (p < 0.01) than neurons from the same neural tubes that did not; they also had significantly shorter neurites (p < 0.05) than labeled neurons from neural tubes electroporated with a control morpholino. Thus, normal expression of Class III beta tubulin may not be necessary for neurogenesis in the early avian spinal cord in situ, but is required for neurite outgrowth in vitro.  相似文献   

2.
3.

Background  

Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish.  相似文献   

4.
Employment of enhancer elements to drive expression of reporter genes in neurons is a widely used paradigm for tracking axonal projection. For tracking axonal projection of spinal interneurons in vertebrates, germ line-targeted reporter genes yield bilaterally symmetric labeling. Therefore, it is hard to distinguish between the ipsi- and contra-laterally projecting axons. Unilateral electroporation into the chick neural tube provides a useful means to restrict expression of a reporter gene to one side of the central nervous system, and to follow axonal projection on both sides 1 ,2-5. This video demonstrates first how to handle the eggs prior to injection. At HH stage 18-20, DNA is injected into the sacral level of the neural tube, then tungsten electrodes are placed parallel to the embryo and short electrical pulses are administered with a pulse generator. The egg is sealed with tape and placed back into an incubator for further development. Three days later (E6) the spinal cord is removed as an open book preparation from embryo, fixed, and processed for whole mount antibody staining. The stained spinal cord is mounted on slide and visualized using confocal microscopy.  相似文献   

5.
Cadherins and N-CAM are Ca++-dependent and Ca++-independent cell adhesion molecules respectively. These molecules play a key role in morphogenesis and histogenesis. We determined the spatiotemporal pattern of N-cadherin and N-CAM-180 kDa expression by immunohistochemistry during development in two South-American anuran species (Bufo arenarum, toad and Hyla nana, frog). Both N-cadherin and N-CAM were not detectable during early developmental stages. Expression of N-cadherin appeared between the inner and the outer ectoderm layers at stages 19-20. At stages 24-25, N-cadherin was expressed in the neural tube and the heart. In early tadpoles, N-cadherin expression increased along with the central nervous system (CNS) morphogenesis, and reached its maximum level at metamorphic climax stage. N-Cadherin expression was not uniformly distributed. At stage 42, olfactory placodes and retina expressed N-cadherin. Contrary to N-CAM, the strongly myelinated cranial nerves were not labeled. N-Cadherin was present in several mesoderm derivatives such as the notochord, heart and skeletal muscle. The non-neural ectoderm and the endoderm were always negative. Expression of N-CAM appeared first in the neural tube at stages 24-25 and the level of expression became uniform from pre-metamorphic to metamorphic climax tadpoles. At this latter stage, a clear N-CAM immunolabeling appeared in the nerve terminals of pharynx and heart. N-Cadherin and N-CAM were found mainly co-expressed in the CNS from early tadpole to metamorphic climax tadpole. Our results show that the expression of N-CAM and N-cadherin is evolutionary conserved. Their increased expression during late developmental stages suggests that N-CAM and N-cadherin are involved in cell contact stabilization during tissue formation.  相似文献   

6.
Transient transfection of intraerythrocytic Babesia bovis parasites has been previously reported. In this study, we describe the development and optimization of methods for transfection of purified B. bovis merozoites using either nucleofection (Amaxa) or conventional electroporation (Gene Pulser II, BioRad). Initially, the optimal buffer ("Plasmodium 88A6") and program (v-24) for nucleofection of free merozoites with a plasmid containing the luciferase gene as a reporter were determined. Using the same reporter plasmid, optimal voltage, capacitance and resistance for transfecting free merozoites by electroporation were defined to be 1.2 kV/25 microF/200 Omega. Using these optimal parameters, analysis of the time course of luciferase expression using either system to transfect free B. bovis merozoites showed high enzyme activity at 24h, with a rapid decline thereafter. Nucleofection was approximately five times more effective than electroporation when using a small quantity (2 microg) of DNA, while electroporation was twice as effective as nucleofection when a larger quantity of plasmid DNA (100 microg) was used. Parasite viability was significantly higher when using nucleofection when compared to electroporation regardless of the amount of DNA used. Comparison of luciferase expression after transfection of merozoites with circular, linearized, or double digested plasmid indicated that intact, circular plasmid was necessary for optimal luciferase expression. Overall, the results provide a basis for optimal transfection of purified B. bovis merozoites using either nucleofection or conventional electroporation. However, nucleofection is significantly more efficient when transfecting either circular or restriction digested DNA in the 2-10 microg range.  相似文献   

7.
8.
9.
Frizzleds (Fzds) are transmembrane receptors that can transduce signals dependent upon binding of Wnts, a large family of secreted glycoproteins homologous to the Drosophila wingless gene. FZDs are critical for a wide variety of normal and pathological developmental processes. In the nervous system, Wnts and Frizzleds play an important role in anterior-posterior patterning, cell fate decisions, proliferation, and synaptogenesis. Here, we preformed a comprehensive expression profile of Wnt receptors (FZD) by using situ hybridization to identify FZDs that are expressed in dorsal-ventral regions of the neural tube development. Our data show specific expression for FZD1,2,3,7,9 and 10 in the chick developing spinal cord. This expression profile of cFZD receptors offers the basis for functional studies in the future to determine roles for the different FZD receptors and their interactions with Wnts during dorsal-ventral neural tube development in vivo. Furthermore, we also show that co-overexpression of Wnt1/3a by in vivo electroporation affects FZD7/10 expression in the neural tube. This illustrates an example of Wnts-FZDs interactions during spinal cord neurogenesis.  相似文献   

10.
The cricket (Gryllus bimaculatus) is a hemimetabolous insect that is emerging as a model organism for the study of neural and molecular mechanisms of behavioral traits. However, research strategies have been limited by a lack of genetic manipulation techniques that target the nervous system of the cricket. The development of a new method for efficient gene delivery into cricket brains, using in vivo electroporation, is described here. Plasmid DNA, which contained an enhanced green fluorescent protein (eGFP) gene, under the control of a G. bimaculatus actin (Gb′-act) promoter, was injected into adult cricket brains. Injection was followed by electroporation at a sufficient voltage. Expression of eGFP was observed within the brain tissue. Localized gene expression, targeted to specific regions of the brain, was also achieved using a combination of local DNA injection and fine arrangement of the electroporation electrodes. Further studies using this technique will lead to a better understanding of the neural and molecular mechanisms that underlie cricket behaviors.  相似文献   

11.
Gene transfer into cultured mammalian embryos by electroporation   总被引:5,自引:0,他引:5  
To gain a better understanding of mammalian development at the molecular level, technology is needed that allows the transfer of exogenous genes into desired embryonic regions at defined stages of development. Our strategy has been to use electroporation (EP) of plasmid DNA following whole-embryo culture (WEC). In our gene transfer system, postimplantation rodent embryos are taken out of the uterus and a purified DNA solution of mammalian expression plasmid constructs is injected into the neural tube. A square-pulse current is delivered using an electroporator with an optimizer. Electroporated embryos are allowed to develop in the WEC system for 24--48 h. Within the targeted area, the proportion of transfected cells varied from 10% to approximately 100% depending on the test conditions (e.g., DNA concentration, voltage, duration of EP, and pulse number). The EP--WEC system has several advantages including rapid gene expression, minimal laboratory work, precisely targeted regions, and no risk for human beings. Application of the method is useful in improving our understanding of early neural development (E7--E12 in mice), e.g., alteration of gene function via ectopic expression, interference with dominant negative proteins, and fate mapping with marker genes. In addition, EP can complement genetic approaches such as the generation of knockout and transgenic mice.  相似文献   

12.

Background

Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

Methods

Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

Results

Experiments confirm that electroporation alone is more effective in enhancing reporter gene expression than plasmid injection alone, plasmid conjugation with liposomes followed by injection, or than the combination of liposomes and electroporation. However, with two time courses of multiple electrically-mediated plasmid deliveries, neither the levels nor duration of transgene expression are significantly increased. Tissue damage may increase following a second treatment, no further damage is observed after a third treatment. When electroporation conditions utilized in a mouse model are tested in thicker rat skin, only higher field strengths or longer pulses were as effective in plasmid delivery.

Conclusion

Electroporation enhances reporter plasmid delivery to the skin to a greater extent than the liposome conjugation method tested. Multiple deliveries do not necessarily result in higher or longer term expression. In addition, some impact on tissue integrity with respect to surface damage is observed. Pulsing conditions should be optimized for the model and for the expression profile desired.  相似文献   

13.
目的 初步探讨PTEN基因在早期神经嵴细胞迁移中的作用.方法 首先胚胎整体的原位杂交和免疫荧光方法检测鸡胚胎内源性的PTEN基因及蛋白水平的表达情况;其次,利用鸡胚胎体内半侧神经管转染的方法,使神经管一侧PTEN基因过表达,对侧神经管为正常对照侧;最后,通过Pax7的整体胚胎免疫荧光表达观察PTEN基因对其标记的部分神经嵴细胞迁移的影响.结果 内源性PTEN基因在mRNA和蛋白水平表达显示,其在早期胚胎HH4期的神经板即开始明显的表达;通过半侧过表达PTEN基因后观察到过表达PTEN基因侧的头部神经嵴细胞迁移与对照侧相比明显受到抑制,但对躯干部的影响并不明显.结论 PTEN基因可能抑制早期胚胎头部神经嵴细胞的迁移.  相似文献   

14.
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo.Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs)1-3. NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube4. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage5-13, melanocytes11,14-20, neurons and glia21-32. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo11,33-37, 2) signals from neighboring cells as they migrate38-44, and 3) the microenvironment of their ultimate destination within the embryo45,46. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis.Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis2,47. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample2,47. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed47.Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody48-56 allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis45. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation40, injection of inhibitory molecules57,58, or genetic manipulation via electroporation of expression plasmids59-61, to identify the response of particular migratory streams of NCCs to perturbations in the embryo''s developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.62  相似文献   

15.
Electroporation was used for gene delivery and evaluation of various parameters affecting transient expression of a gene for β-glucuronidase ( gus ) in leaf protoplasts of Oryza sativa var. Basmati-370. Transient expression was found to be dependent on voltage, capacitance, amount of plasmid and carrier DNA as well as period of culture. Maximum GUS activity was obtained when a 150 ms pulse at 300 V cm-1 and 200 μF was applied to the protoplasts (l–2×106ml−1) in an electroporation buffer containing 20 μg of plasmid and 30 μg of calf thymus DNA, assayed 48 h after electroporation. DNA topology did not influence expression of the gene as both linear and supercoiled templates resulted in similar activities, but a 4-fold decrease in expression was observed if the gene was excised, reflecting the positive influence of vector sequences on gene expression.  相似文献   

16.
17.
Atkins RL  Wang D  Burke RD 《BioTechniques》2000,28(1):94-6, 98, 100
Avian embryos are a popular model for cell and developmental biologists. However, analysis of gene function in living embryos has been hampered by difficulties in targeting the expression of exogenous genes. We have developed a method for localized electroporation that overcomes some of the limitations of current techniques. We use a double-barreled suction electrode, backfilled with a solution containing a plasmid-encoding green fluorescent protein (GFP) and a neurophysiological stimulator to electroporate small populations of cells in living embryos. As many as 600 cells express GFP 24-48 h after electroporation. The number of cells that express GFP depends on the number of trains, the pulse frequency and the voltage. Surface epithelial cells and cells deep to the point of electroporation express GFP. No deformities result from electroporations, and neurons, neural crest, head mesenchyme, lens and otic placode cells have been transfected. This method overcomes some of the disadvantages of viral techniques, lipofection and in vivo electroporation. The method will be useful to biologists interested in tracing cell lineage or making genetic mosaic avian embryos.  相似文献   

18.
Large size and external development of the chicken embryo have long made it a valuable tool in the study of developmental biology. With the advent of molecular biological techniques, the chick has become a useful system in which to study gene regulation and function. By electroporating DNA or RNA constructs into the developing chicken embryo, genes can be expressed or knocked down in order to analyze in vivo gene function. Similarly, reporter constructs can be used for fate mapping or to examine putative gene regulatory elements. Compared to similar experiments in mouse, chick electroporation has the advantages of being quick, easy and inexpensive. This video demonstrates first how to make a window in the eggshell to manipulate the embryo. Next, the embryo is visualized with a dilute solution of India ink injected below the embryo. A glass needle and pipette are used to inject DNA and Fast Green dye into the developing neural tube, then platinum electrodes are placed parallel to the embryo and short electrical pulses are administered with a pulse generator. Finally, the egg is sealed with tape and placed back into an incubator for further development. Additionally, the video shows proper egg storage and handling and discusses possible causes of embryo loss following electroporation.  相似文献   

19.
The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.  相似文献   

20.
We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock‐in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near‐maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号