首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circumstantial evidence is presented which indicates that Polyporus volvatus is parasitic. Cultures of Polyporus volvatus and Fomes igniarius may be obtained from the young sporophores by the tissue method. In Polyporus volvatus the presence of the following enzymes was demonstrated: esterase, maltase, lactase, sucrase, raffinase, diastase, inulase, cellulase, hemicellulase, glucosidase, rennet, and catalase. In Fomes igniarius the presence of the following enzymes was demonstrated: esterase, maltase, lactase, sucrase, raffinase, diastase, inulase, cellulase, hemicellulase, glucosidase, urease, rennet, and catalase.  相似文献   

2.
In Echinodontium tinctorium the presence of the following enzymes was demonstrated: esterase, maltase, lactase, sucrase, raffinase, diastase, inulase, cellulase, hemicellulase, urease, rennet, and catalase.  相似文献   

3.
Two assays were conducted to assess the influence of infective juveniles (IJs) of Heterorhabditis baujardi LPP7 on the embryogenesis and hatching of Meloidogyne mayaguensis. In the first assay, eggs were incubated in water alone or in the presence of infective juveniles, and completion of embryogenesis was evaluated 14 days later. In the second assay, unhatched second-stage juveniles were incubated in distilled water alone or in the presence of infective juveniles. Cumulative hatching was compared at various time intervals. Embryogenesis was not affected, whereas second-stage juveniles hatching was delayed probably because of the eggs permeability to noxious metabolites released by Photorhabdus luminescens, which is the bacterial symbiont of H. baujardi.  相似文献   

4.
5.
Large molecular-size hemicelluloses, including xyloglucan, decreased in quantity during development of carnation (Dianthus caryophyllus L. cv White Sim) petals, along with a relative increase in polymers with an average size of 10 kilodaltons. An enzyme extract from senescing petal tissue depolymerized the large molecular-size hemicelluloses in a pattern similar to that occurring in vivo during petal development. The products generated in vitro were composed of polymeric and monomeric components, the latter consisting primarily of xylose, galactose, and glucose. The 10 kilodalton hemicelluloses were resistant to in vitro enzymic hydrolysis. Glycosyl-linkage composition of the large molecular-size polymers provided evidence for the presence of xyloglucan with smaller amounts of arabinoxylan and arabinan. The 10 kilodalton polymers were enriched in mannosyl and 4-linked glucosyl residues, presumably derived from glucomannan. During petal development or enzymic hydrolysis, no change was observed in the relative glycosyl-linkage composition of the large molecular-size hemicelluloses. The in vitro activity of carnation petal enzymes active toward native hemicelluloses increased threefold at the onset of senescence and declined slightly thereafter. Gel chromatography revealed 23 and 12 kilodalton proteins with hemicellulase activity. The enzymes hydrolyzed the large molecular-size hemicelluloses extensively and without formation of monomers. Endoxylanase activity was detected in the partially purified enzyme preparation. Xyloglucan was depolymerized in the absence of cellulase activity, suggesting the presence of a xyloglucan-specific glucanase. These data indicate that the hemicellulose molecular-size changes observed during development of carnation petals are due, in part, to the enzymic depolymerization of large molecular-size hemicelluloses.  相似文献   

6.
D-Galacto-D-xylo-D-glucans (amyloids) from Balsamina, Tropaeolum, and Tamarindus seeds behave in a similar manner in the presence of various glycosidase preparations: slow depolymerization by enzymes from several germinated or non-germinated seeds, and hydrolysis into monosaccharides and oligosaccharides by commercial cellulase and hemicellulase preparations from fungi. A purified cellulase from Penicillium notatum gave a dialyzable fraction almost exclusively composed of α-D-xylopyranosyl-(1→6)-D-glucose residues and a nondialyzable fraction composed of chains of β-D-(1→4)[withsome (1→3)]-glucopyranosyl residues; β-D-galacto-pyranosyl-(1→2)-α-D-xylosyl groups are linked to some of the β-D-glucosyl residues at 0-6. The presence of (1→3)-linkages in the D-glucan chain of the Balsamina was verified by methylation and sequential periodate oxidation-borohydride reduction; the distribution of the substituents on the D-glucan chain is not regular. The main D-glucan backbone, where the β-D-glucosyl residues are partly linked at 0-6 to β-D-galactosyl-(1→2)-D-xylosyl groups, is linked to D-glucan chains where almost all the D-glucose units are linked at 0-6 by one α-D-xylosyl group. The presence of 3,6-di-O-methyl-D-glucose after permethylation and hydrolysis suggests that the xyloglucan chains are linked to 0-2 of the D-glucosyl units of the galactoxyloglucan backbone.  相似文献   

7.
The cellulase and hemicellulase genes of the filamentous fungus Trichoderma reesei have been shown to be under carbon catabolite repression mediated by the regulatory gene cre1. In this study, strains were constructed in which the cre1 gene was either completely removed or replaced by a truncated mutant variant, cre1-1, found previously in the Rut-C30 mutant strain with enhanced enzyme production capability. The T. reesei transformants with either deletion or truncation of cre1 had clearly altered colony morphology compared with the parental strains, forming smaller colonies and fewer aerial hyphae and spores. Liquid cultures in a medium with glucose as a carbon source showed that the transformants were derepressed in cellulase and hemicellulase production. Interestingly, they also produced significantly elevated levels of these hydrolytic enzymes in fermentations carried out in a medium inducing the hydrolase genes. This suggests that cre1 acts as a modulator of cellulase and hemicellulase gene expression under both noninducing and inducing conditions. There was no phenotypic difference between the Δcre1 and cre1-1 mutant strains in any of the experiments done, indicating that the cre1-1 gene is practically a null allele. The results of this work indicate that cre1 is a valid target gene in strain engineering for improved enzyme production in T. reesei.The filamentous fungus Trichoderma reesei (Hypocrea jecorina) produces large amounts of extracellular enzymes. The majority of the secreted proteins are various plant polymer-degrading enzymes; the most abundant of these enzymes are the cellobiohydrolases and endoglucanases that act synergistically to break down cellulose. This fungus has been used as a production host for various industrial enzymes, including products tailored for textile, feed, food, and pulp and paper applications (6, 10). It has been reported that protein production levels in the industrial T. reesei process exceed 100 g/liter (7).The major cellulase and hemicellulase genes are regulated in a coordinate manner by the carbon source available (2, 9, 14). Cellulose and other plant materials and other substances (for example, lactose) induce the expression of cellulase and hemicellulase genes, while glucose acts as a repressing carbon source. Several genes coding for regulators of cellulase and hemicellulase expression have been isolated. These include CREI mediating carbon catabolite repression, the repressor ACEI, the activator ACEII, the CCAAT binding complex Hap2/3/5 (reviewed in references 2, 17, and 27) and the activator XYRI (29). The CREI protein has sequence similarity with other fungal proteins mediating glucose repression, such as Aspergillus nidulans CREA (8) and Saccharomyces cerevisiae MIG1 and RGR1 (22). In T. reesei, glucose repression has been shown to occur upon binding of CREI to specific sequences in the cbh1 promoter (13). A mutant cre1 gene (cre1-1) encoding a truncated form of CREI has been isolated from the hypercellulolytic T. reesei strain Rut-C30, which is capable of cellulase and hemicellulase production on glucose-containing media. Further evidence for the function of CREI in glucose repression was obtained by complementation of the cre1-1 mutation of Rut-C30 by the wild-type cre1 gene, which restored the glucose-repressed phenotype of the strain (15).In this paper, we wanted to address three questions. (i) What is the effect of cre1 mutations in the wild-type background? (ii) Is cre1-1 a null mutation? (iii) Can enzyme production be further improved by cre1 deletion in an industrial production strain improved greatly by mutagenesis and screening programs? Therefore, we introduced cre1-1 allele and cre1 deletion to the wild-type strain QM6a and the cre1 deletion into the industrial strain VTT-D-80133 and studied the effects of these mutations on enzyme production.  相似文献   

8.
An unexpected product was detected during simultaneous saccharification and co-fermentation (SSCF) of paper sludge using added commercial cellulase (Spezyme CP) by Saccharomyces cerevisiae RWB222, S. cerevisiae D5A, and Zymomonas mobilis 8b. Based on glycosyl composition analysis, linkage analysis and NMR analysis, the compound was identified as ethyl β-xylopyranoside (EXP). The carbon mass balance analysis showed up to 25% of xylan originally present in paper sludge was converted to EXP. EXP formation was found in simultaneous saccharification of beech wood xylan as well, and later proved to be produced by the Trichoderma reesei derived cellulase and hemicellulase mixture (Spezyme CP) during the course of xylan hydrolysis in the presence of ethanol, and its production increased with an increased concentration of ethanol, xylan, and T. reesei enzyme. Similar condensation reactions were also observed with other alcohols. These alcoholysis reactions were found to be reversible. Thermoanaerobacterium saccharolyticum was found to be able to degrade EXP.  相似文献   

9.
Three fungal pathogens, Ceratocystis paradoxa (CP), Cephalosporium sacchari (CS), and Marasmius sacchari (MS) were screened for the production of hemicellulose-degrading enzymes (hemicellulases) by induction on bagasse hemicellulose B, and on a commercial preparation of hemicellulose (crude xylan). All three pathogen initially grew poorly on hemicellulose B and “crude xylan” as carbon source. Profuse growth was induced, however, by using mixtures of hemicellulose B and sucrose in the culture media for CP and CS until the organisms were capable of growing on media containing only hemicellulose B. These isolates were classified as CS1 and CP1. Profuse growth occurred when CS and CP were grown on carboxymethylcellulose (CMC) and also when these cultures were transferred to media containing only hemicellulose B. These isolates were classified as CS2 and CP2. When the above four isolates were grown on hemicellulose B as carbon source in submerged liquid culture, only CP1 did not produce any extra-cellular hemicellulase(s), and CP2 produced the highest yield of enzyme. CS2 and CP2 also produced extra-cellular CM-cellulase(s). The CP2-culture isolate was selected for the study of conditions for the optimal production of extra-cellular hemicellulase(s). A preliminary study of the action of enzymes from CS and CP isolated on hemicellulose is reported.  相似文献   

10.
On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.  相似文献   

11.
Onchocerciasis is a debilitating neglected tropical disease caused by infection with the filarial parasite Onchocerca volvulus. Adult worms live in subcutaneous tissues and produce large numbers of microfilariae that migrate to the skin and eyes. The disease is spread by black flies of the genus Simulium following ingestion of microfilariae that develop into infective stage larvae in the insect. Currently, transmission is monitored by capture and dissection of black flies and microscopic examination of parasites, or using the polymerase chain reaction to determine the presence of parasite DNA in pools of black flies. In this study we identified a new DNA biomarker, encoding O. volvulus glutathione S-transferase 1a (OvGST1a), to detect O. volvulus infection in vector black flies. We developed an OvGST1a-based loop-mediated isothermal amplification (LAMP) assay where amplification of specific target DNA is detectable using turbidity or by a hydroxy naphthol blue color change. The results indicated that the assay is sensitive and rapid, capable of detecting DNA equivalent to less than one microfilaria within 60 minutes. The test is highly specific for the human parasite, as no cross-reaction was detected using DNA from the closely related and sympatric cattle parasite Onchocerca ochengi. The test has the potential to be developed further as a field tool for use in the surveillance of transmission before and after implementation of mass drug administration programs for onchocerciasis.  相似文献   

12.
Ascarid Larva Migrans Syndrome (ascarid LMS) is a clinical syndrome in humans, caused by the migration of animal roundworm larvae such as Toxocara canis, Toxocara cati and Ascaris suum. Humans may acquire infection by ingesting embryonated eggs, or infective larvae of these parasites in contaminated meat and organ meats. To detect these pathogenic contaminations, a novel nested multiplex PCR system was developed. Our novel nested multiplex PCR assay showed specific amplification of T. canis, T. cati and Ascaris spp. Detection limit of the nested multiplex PCR was tested with serial dilution of T. canis, T. cati or A. suum genomic DNA (gDNA) from 100?pg to 100 ag and found to be 10?fg, 1?fg and 100?fg, respectively. When larvae were spiked into chicken liver tissue, DNA of T. canis and A. suum was detected from the liver spiked with a single larva, while the assay required at least 2 larvae of T. cati. Moreover, the ascarid DNA was detected from the liver of mice infected with 100 and 300 eggs of T. canis, T. cati or A. suum. This nested multiplex PCR assay could be useful for the detection of contamination with ascarid larvae in meat and organ meats.  相似文献   

13.
The passage of a nuclear polyhedrosis virus (NPV) of the sawfly, Gilpinia hercyniae, through avian gut was studied during cage tests on Sturnus vulgaris (three individuals), Parus ater (one), Parus caerulus (five), and Parus major (one). Following brief infection feeds, polyhedral inclusion bodies of the virus could be detected in bird feces within 0.5 hr. Peak passage of polyhedra occurred in less than 1 hr and none were detected after 2.5 hr. The feces of all birds remained infective (in bioassay tests using first instar G. hercyniae larvae) to the end of the day of infection while those of nine birds remained infective to the next day and of six birds to the third day. One bird, P. major, was also infective on Days 4, 6, and 7. The infectivity of NPV in feces stored for 2 years at +3°C declined by half. Though the scale of their epizootiological contribution is unknown, the comparatively long retention and passage of infective virus suggests birds may be effective in short- and long-distance transport of baculoviruses.  相似文献   

14.
The study of wood decay fungi that naturally biodegrade lignocellulosic polymers has been steadily increasing during the past two decades due to their industrial and innovative applications. In this work, we compare ten species of lignicolous macrofungi which develop fruiting bodies on poplar in relation to their capacity for growing on poplar wood chips and sawdust and of secreting cell wall degrading enzymes. All the fungi studied appeared to be able to grow well in these conditions and to secrete cellulase and hemicellulase, Mn-peroxidase and cellobiose dehydrogenase, while Li-peroxidase and laccase were produced by seven and six out of the ten species, respectively. Variability in the levels of all these enzymatic activities was assessed. Two species, never investigated before, showed the best performances as regards production of cellulolytic and hemicellulolytic activities (Lenzites warnieri) and Mn-peroxidase (Perenniporia meridionalis). The highest laccase level was detected in the well known plant pathogen Fomes fomentarius, and the brown-rot Daedalea quercina proved to be the best producer of lignin peroxidase and cellobiose dehydrogenase.  相似文献   

15.
Aim: To evaluate the effect of four different baking enzymes on the inhibitory activity of five bacteriocin‐like inhibitory substances (BLIS) produced by lactic acid bacteria (LAB) isolated from Lithuanian sourdoughs. Methods and Results: The overlay assay and the Bioscreen methods revealed that the five BLIS exhibited an inhibitory effect against spore germination and vegetative outgrowth of Bacillus subtilis, the predominant species causing ropiness in bread. The possibility that the observed antibacterial activity of BLIS might be lost after treatment with enzymes used for baking purposes was also examined. Conclusions: The enzymes tested; hemicellulase, lipase, amyloglucosidase and amylase had little or no effect on the majority of the antimicrobial activities associated with the five BLIS studied. Significance and Impact of the Study: This study suggests a potential application in the sourdough baking industry for these antimicrobial producing LAB strains in the control of B. subtilis spore germination and vegetative outgrowth.  相似文献   

16.
The shortage of petroleum reserves and the increase in CO2 emissions have raised global concerns and highlighted the importance of adopting sustainable energy sources. Second-generation ethanol made from lignocellulosic materials is considered to be one of the most promising fuels for vehicles. The giant snail Achatina fulica is an agricultural pest whose biotechnological potential has been largely untested. Here, the composition of the microbial population within the crop of this invasive land snail, as well as key genes involved in various biochemical pathways, have been explored for the first time. In a high-throughput approach, 318 Mbp of 454-Titanium shotgun metagenomic sequencing data were obtained. The predominant bacterial phylum found was Proteobacteria, followed by Bacteroidetes and Firmicutes. Viruses, Fungi, and Archaea were present to lesser extents. The functional analysis reveals a variety of microbial genes that could assist the host in the degradation of recalcitrant lignocellulose, detoxification of xenobiotics, and synthesis of essential amino acids and vitamins, contributing to the adaptability and wide-ranging diet of this snail. More than 2,700 genes encoding glycoside hydrolase (GH) domains and carbohydrate-binding modules were detected. When we compared GH profiles, we found an abundance of sequences coding for oligosaccharide-degrading enzymes (36%), very similar to those from wallabies and giant pandas, as well as many novel cellulase and hemicellulase coding sequences, which points to this model as a remarkable potential source of enzymes for the biofuel industry. Furthermore, this work is a major step toward the understanding of the unique genetic profile of the land snail holobiont.  相似文献   

17.
《Biological Control》2010,55(3):166-171
Sancassania polyphyllae (Acari: Acaridae) is associated with larvae of the white grub, Polyphylla fullo (Coleoptera: Scarabaeidae), and will feed on the infective juveniles of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae which are important biological control agents of soil insect pests. We conducted laboratory studies to determine the potential negative effects this mite species might have on biological control of soil insect pests. Our objectives in this study were to (1) determine the response of S. polyphyllae adult mites to a nematode-killed insects on agar, (2) evaluate the predation by mites on Steinernema feltiae infective juveniles from nematode-killed insects on agar and in soil, and (3) assess predation efficiency of the mite on the infective juveniles in the soil. On agar, we found (1) significantly more adult female mites near or on a nematode-killed Ceratitis capitata (Diptera: Tephritidae) larva than near or on the freeze-killed larva or a bamboo mimic suggesting that a chemical or an odor from the nematode-killed larva attracted the mites, and (2) 10 mites consumed 96% of infective juveniles that emerged from an insect cadaver. In soil with a nematode-killed insect, the average number of infective juveniles recovered was <30 when mites were present, whereas the average number of infective juveniles recovered was >375 when the mites were absent. When the infective juveniles alone were placed in different depths in relation to the mites in the soil column for 4 and 10 days, S. polyphyllae was not as efficient at finding the infective juveniles when they were separated from each other in the soil lending support to the idea that the mites were cueing in on the cadaver as a food resource. Our data suggest that emerging infective juveniles from an insect cadaver in the soil in the presence of S. polyphyllae can adversely affect biological control because of nematode consumption by the mites.  相似文献   

18.
19.
Cyclic nucleotide phosphodiesterase activity (EC 3.1.4.17) was studied in fetal and newborn rabbit brain, heart, liver, kidney, and lung. Kinetic analysis of phosphodiesterase activity from homogenates of organs from the 25-day embryo suggested the presence of a high Km and a low Km activity for both cyclic AMP and cyclic GMP hydrolysis. The addition of 1 μm cyclic GMP to the assay stimulated the hydrolysis of cyclic AMP by whole homogenates of liver, brain, lung, and kidney, but not heart, at all of the ages studied. The addition of micromolar levels of calcium ion stimulated cyclic GMP hydrolysis by homogenates of fetal brain, heart, and kidney, with or without added protein activator. Cyclic GMP phosphodiesterase activity was not stimulated by the addition of calcium ion in homogenates of early fetal rabbit liver and lung, but stimulation was detected in the late embryo and newborn. The presence of the heat-stable protein activator was demonstrated in brain, heart, kidney, liver, and lung tissue at all of the fetal ages studied, and in the newborn rabbit. DEAE-cellulose chromatography demonstrated the presence of three separable enzymes in brain and liver at 15 days, heart at 19 days, and lung and kidney at 25 days of gestation, with no changes in the kinetic properties of the isolated enzymes during development. These experiments suggest that all of the organs studied have the mature array of phosphodiesterases early in development, but an enzyme from liver and lung becomes sensitive to regulatory control by calcium only late in gestation.  相似文献   

20.
Thiobenzyl benzyloxycarbonyl-l-lysinate (Z-Lys-SBzl), a substrate for trypsin-likeproteases, was synthesized. In the presence of 5,5′-dithiobis(2-nitrobenzoic acid) the hydrolysis of the thiol ester by trypsin-like enzymes provides a continuous colorimetric assay with a sensitivity comparable to the best fluorometric substrates. Z-Lys-SBzl is readily synthesized in good yield, is water soluble, and has a low rate of spontaneous hydrolysis even at pH 8.0. This assay procedure has been routinely used with urokinase, human urinary and human plasma kallikrein, thrombin, plasmin, β-trypsin, factor Xa, and crotalase. Levels of detection of these enzymes are in the range 10?14 to 10?13 mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号