首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
In this study, we have characterized the in vitro binding of Neisseria gonorrhoeae Fur to several well-defined iron transport genes, as well as to additional genes involved in major catabolic, secretory, and recombination pathways of gonococci. The gonococcal Fur protein was recombinantly expressed in Escherichia coli HBMV119. Fur was isolated from inclusion bodies and partially purified by ion-exchange chromatography. Gonococcal Fur was found to bind to the promoter/operator region of a gene encoding the previously identified Fur-regulated periplasmic binding protein (FbpA) in a metal ion-dependent fashion, demonstrating that purified Fur is functional. In silico analysis of the partially completed gonococcal genome (FA1090) identified Fur boxes in the promoters of several genes, including tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, a hypothetical gene (Fe-S homolog), and the opa family of genes. By using purified gonococcal Fur, we demonstrate binding to the operator regions of tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, the Fe-S homolog gene, and the opa gene family as determined by an electrophoretic mobility shift assay. While gonococcal Fur was demonstrated to bind to the promoter regions of all 11 opa genes (opaA through -K), we did not detect binding of purified E. coli Fur with 8 of the 11 opa members, indicating that target DNA sequence specificities between these two closely related proteins exist. Furthermore, we observed differences in the relative strengths of binding of gonococcal Fur for these different genes, which most likely reflect a difference in affinity between gonococcal Fur and its DNA targets. This is the first report that definitively demonstrates the binding of gonococcal Fur to its own promoter/operator region, as well as to the opa family of genes that encode surface proteins. Our results demonstrate that the gonococcal Fur protein binds to the regulatory regions of a broad array of genes and indicates that the gonococcal Fur regulon is larger than originally proposed.  相似文献   

9.
A lacZ-based reporter gene system was used to identify the promoter of the Campylobacter jejuni iron-responsive gene regulator Fur. In other Gram-negative bacteria, the fur promoter is usually located directly upstream of the fur gene and is often autoregulated in response to iron. In this study we demonstrate that expression of the C. jejuni fur gene is controlled from two promoters located in front of the first and second open reading frames upstream of fur. Neither of these promoters was iron-regulated, and the presence of both promoters in front of fur gives higher expression of the lacZ reporter than with either promoter alone. Expression from two distal promoters might be a mechanism for regulating the level of the C. jejuni Fur protein in response to unknown stimuli.  相似文献   

10.
11.
The promoter region of the pColV-K30-encoded operon specifying biosynthesis and transport of the siderophore aerobactin was subjected to deletion analysis to determine the smallest DNA sequence affording iron regulation of a iucA'-'lacZ gene fusion. A 78-base-pair (bp) region containing the main (P1) promoter retained the character of inducibility under iron starvation. A 250-bp fragment carrying this sequence was examined for protection against DNase I by the Fur protein, the product of a gene (fur) required for negative control of several iron-regulated functions. The DNase I footprints, in the presence of various divalent heavy-metal ions added as corepressors, revealed two contiguous binding sites with different lengths and affinities for Fur. Increased concentrations of the protein appeared to elicit formation of repressor oligomers which bind to the upstream and downstream regions of the P1 promoter in a metal-dependent fashion, but with a presently undefined stoichiometry. The primary site for Fur binding spans 31 bp and contains two overlapping symmetry dyads which share the sequence 5'-TCATT-3'. It also contains extensive homology with a 19-bp consensus sequence for iron-regulated genes as deduced from comparison with the fhuA and fepA putative promoter sequences.  相似文献   

12.
13.
14.
15.
Promoter regions of the mcy operon from Microcystis aeruginosa PCC7806, which is responsible for microcystin synthesis in this organism, exhibit sequences that are similar to the sequences recognized by Fur (ferric uptake regulator). This DNA-binding protein is a sensor of iron availability and oxidative stress. In the presence of Fe(2+), a dimer of Fur binds the iron-boxes in their target genes, repressing their expression. When iron is absent the expression of those gene products is allowed. Here, we show that Fur from M. aeruginosa binds in vitro promoter regions of several mcy genes, which suggests that Fur might regulate, among other factors, microcystin synthesis. The binding affinity is increased by the presence of metal and DTT, suggesting a response to iron availability and redox status of the cell.  相似文献   

16.
17.
18.
Expression studies utilizing the regA promoters, fused in tandem or separately to promoterless reporter genes, indicated that regA is transcribed from two promoters (P1 and P2). Both promoters can act independently. Expression from the P1 promoter is not affected by the iron content of the medium. Expression from the P2 promoter is tightly regulated by iron.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号