首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Crude protein extracts of Uromyces appendiculatus contain a polypeptide that resembles actin in several ways. This protein eluates from DEAE-cellulose with concentrations of KCl known to release actin of other species from the cation. The polypeptide is recognized by polyclonal antibodies directed to sodium dodecyl sulfate-denatured actin of chicken gizzard as well as by a monoclonal antibody also made to gizzard actin from chicken, but not by antibodies made against rabbit skeletal muscle actin. Western blot analysis after electrophoresis of the protein on polyacrylamide revealed that the protein has an electrophoretic mobility very similar to that of rabbit skeletal muscle actin. We were unable either to isolate actin by affinity chromatography using immobilized DNase-I, or to identify bean rust actin using DNase-I inhibition assays. Nevertheless, large quantities of the protein sedimented by high speed centrifugation. The sedimented protein resisted attempts to solubilize it under conditions normally used to depolymerize actin filaments. Both of the latter findings indicate unusual features of bean rust actin. Immunocytochemical studies of actin localization in germlings of the fungus using two chicken gizzard actin antibodies revealed actin-containing sites which were similar to those previously observed with fluorescently tagged phallotoxin derivatives.  相似文献   

2.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

3.
Incubation of subcellular fractions of fibroblasts with [32P]ATP demonstrated 10 phosphoproteins whose phosphorylation can be increased by cyclic AMP or cyclic AMP-dependent protein kinase. One of these phosphoproteins, MW 240,000, resembles the actin binding protein, filamin, and can be selectively precipitated by antibodies to chicken gizzard filamin. Furthermore chicken gizzard filamin can be phosphorylated by skeletal muscle protein kinase and cyclic AMP stimulates this reaction.  相似文献   

4.
Synthesis and secretion of serum gelsolin by smooth muscle tissue   总被引:7,自引:0,他引:7  
Gelsolin is one of many actin binding proteins which regulate the structure of intracellular microfilaments. A secretory form of gelsolin, a protein also known as "actin depolymerizing factor" or "brevin," is present in animal sera. In the present studies, we: demonstrate that a 90-kDa secretory protein produced by chicken gizzard smooth muscle is serum gelsolin; show that chicken serum gelsolin, as compared with its mammalian counterparts, lacks 26 amino acid residues at its NH2-terminal end; show that gizzard smooth muscle devotes on the order of 100 times more of its total protein synthetic effort (about 1% of the total) to the production of serum gelsolin than does liver, a previously speculated major source of this protein; and give evidence that rat tissues which are rich in smooth muscle cells (blood vessels, uterine muscle) also produce serum gelsolin. Our work suggests that, in vivo, smooth muscle-containing tissues may be major producers of the serum form of this actin binding protein.  相似文献   

5.
Injection of chicken gizzard actin into BALB/c mice resulted in the isolation of a smooth muscle-specific monoclonal antibody designated CGA7. When assayed on methanol-Carnoy's fixed, paraffin-embedded tissue, it bound to smooth muscle cells and myoepithelial cells, but failed to decorate striated muscle, endothelium, connective tissue, epithelium, or nerve. CGA7 recognized microfilament bundles in early passage cultures of rat aortic smooth muscle cells and human leiomyosarcoma cells but did not react with human fibroblasts. In Western blot experiments, CGA7 detected actin from chicken gizzard and monkey ileum, but not skeletal muscle or fibroblast actin. Immunoblots performed on two-dimensional gels demonstrated that CGA7 recognizes gamma-actin from chicken gizzard and alpha- and gamma-actin from rat colon muscularis. This antibody was an excellent tissue-specific smooth muscle marker.  相似文献   

6.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal.
The two smooth muscle actins—bovine aorta actin and chicken gizzard actin—differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared.
In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably closer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

7.
Complete amino acid sequences for four mammalian muscle actins are reported: bovine skeletal muscle actin, bovine cardiac actin, the major component of bovine aorta actin, and rabbit slow skeletal muscle actin. The number of different actins in a higher mammal for which full amino acid sequences are now available is therefore increased from two to five. Screening of different smooth muscle tissues revealed in addition to the aorta type actin a second smooth muscle actin, which appears very similar if not identical to chicken gizzard actin. Since the sequence of chicken gizzard actin is known, six different actins are presently characterized in a higher mammal. The two smooth muscle actins--bovine aorta actin and chicken gizzard actin--differ by only three amino acid substitutions, all located in the amino-terminal end. In the rest of their sequences both smooth muscle actins share the same four amino acid substitutions, which distinguish them from skeletal muscle actin. Cardiac muscle actin differs from skeletal muscle actin by only four amino acid exchanges. No amino acid substitutions were found when actins from rabbit fast and slow skeletal muscle were compared. In addition we summarize the amino acid substitution patterns of the six different mammalian actins and discuss their tissue specificity. The results show a very close relationship between the four muscle actins in comparison to the nonmuscle actins. The amino substitution patterns indicate that skeletal muscle actin is the highest differentiated actin form, whereas smooth muscle actins show a noticeably cloer relation to nonmuscle actins. By these criteria cardiac muscle actin lies between skeletal muscle actin and smooth muscle actins.  相似文献   

8.
Calponin is an actin binding protein found in the smooth muscle cells of chicken gizzard. The localization of the protein was examined in bovine platelets, mouse fibroblasts, and the smooth muscle cells of the bovine aorta. Immunoblotting of whole platelet lysates revealed that the antibody to chicken gizzard calponin recognized two proteins with apparent molecular masses of 37 and 23 kDa in the resting state and an additional high-molecular-weight component (approximately 40 kDa) in the activated state. The localizations of calponin and caldesmon, and the correlation of their localizations with that of the actin cytoskeleton were analyzed by immunofluorescence microscopy using appropriate antibodies and rhodamine-phalloidin. In resting bovine platelets, calponin exhibited the same distribution as actin filaments, which are organized in a characteristic wheel-like structure. A similar distribution was observed with the anti-caldesmon antibody. Colocalization of calponin and actin were shown in activated platelets and along stress fibers of both fibroblasts and smooth muscle cells. These results suggest not only a cytoskeletal role associated with microfilaments but also a regulatory role of these proteins for actin-myosin interaction.  相似文献   

9.
Actin has been purified from smooth muscle (chicken gizzard) by two different procedures and its activation of smooth muscle myosin Mg2+-ATPase activity compared with that achieved with rabbit skeletal muscle actin. The procedure of Pardee and Spudich (Methods Enzymol. (1982) 85, 164-181) for the purification of rabbit skeletal muscle actin is readily applicable to the isolation of chicken gizzard actin, enabling large quantities to be purified in two days. Smooth muscle actin could be successfully stored as F-actin at -80 degrees C and survived freezing and thawing at least twice. Smooth muscle actin activated myosin Mg2+-ATPase to a higher level than its skeletal muscle counterpart (77.9 nmol Pi/min/mg myosin vs 48.1 nmol Pi/min/mg myosin).  相似文献   

10.
Using a rabbit polyclonal-antibody preparation directed against the chicken gizzard protein, we demonstrated by immunoblotting the presence of the 22 kDa protein (SM22) in a variety of chicken smooth-muscle-containing organs, including uterus, intestine, gizzard, oesophagus and aorta. Protein SM22 was present in only trace amounts in brain, liver and heart, and could not be detected in chicken breast muscle. The antibody preparation did not cross-react with extracts of bovine aorta. However, the presence of SM22 as a major component in bovine aorta and pig carotid was demonstrated by its co-migration with the purified chicken gizzard protein on one- and two-dimensional polyacrylamide electrophoretic gels. Its molar abundance relative to actin was estimated to be 0.9:6.0 and 1.4:6.0 for bovine aorta and pig carotid respectively. Like the chicken gizzard protein, it separates on pH-gradient electrophoresis into at least three variants, alpha, beta and gamma, with similar apparent Mr. Purification of the aorta SM22 showed it to have a similar amino acid composition to the chicken gizzard protein. We conclude that SM22 is widely distributed and an abundant and unique protein component of smooth-muscle tissues of birds and mammals.  相似文献   

11.
alpha-Actinin purified from chicken gizzard smooth muscle was characterized in comparison with alpha-actinins from chicken striated muscles, or fast-skeletal muscle, slow-skeletal muscle, and cardiac muscle. The gizzard alpha-actinin molecule consisted of two apparently identical subunits with a molecular weight of 100,000 on SDS-polyacrylamide gel electrophoresis, as do striated-muscle alpha-actinins. Its isoelectric points in the presence of urea were similar to the striated-muscle counterparts. Despite these similarities, distinctive amino acid sequences between smooth-muscle alpha-actinin and striated-muscle alpha-actinins were revealed by peptide mapping using limited proteolysis in SDS. Gizzard alpha-actinin was immunologically distinguished from striated-muscle alpha-actinins. Gizzard alpha-actinin formed bundles of gizzard F-actin as well as of skeletal-muscle F-actin, but could not form any cross-bridges between adjacent actin filaments under conditions where skeletal-muscle alpha-actinin could. Temperature-dependent competition between gizzard alpha-actinin and tropomyosin on binding to gizzard thin filaments was demonstrated by electron microscopic observations. Gizzard alpha-actinin promoted Mg2+-ATPase activity of reconstituted skeletal actomyosin, gizzard acto-skeletal myosin, and gizzard actomyosin. This promoting effect was depressed by the addition of gizzard tropomyosin. These findings imply that, despite structural differences between gizzard and striated-muscle alpha-actinin molecules, they function similarly in vitro, and that gizzard alpha-actinin can interact not only with smooth-muscle actin (gamma- and beta-actin) but also with skeletal-muscle actin (alpha-actin).  相似文献   

12.
Huang R  Wang CL 《FEBS letters》2006,580(1):63-66
Caldesmon (CaD) is thought to regulate smooth muscle contraction, because it binds actin and inhibits actomyosin interactions. A synthetic actin-binding peptide (GS17C) corresponding to Gly666-Ser682 of chicken gizzard CaD has been shown to induce force development in permeabilized smooth muscle cells. The mechanism of GS17C's action remains unclear, although a structural effect was postulated. By photo-crosslinking and fluorescence quenching experiments with a gizzard CaD fragment (H32K; Met563-Pro771) and its mutants, we showed that GS17C indeed dissociated the C-terminal region of H32K from actin, in a manner similar to extracellular signal-regulated kinase-mediated phosphorylation, thereby reversing the CaD-imposed inhibition and enabling the actomyosin interaction.  相似文献   

13.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

14.
The high molecular weight actin-binding protein filamin is located at the periphery of the Z disk in the fast adult chicken pectoral muscle (Gomer, R. H., and E. Lazarides, 1981, Cell, 23: 524-532). In contrast, we have found that in the slow anterior latissimus dorsi (ALD) muscle, filamin was additionally located throughout the l band as judged by immunofluorescence with affinity-purified antibodies on myofibrils and cryosections. The Z line proteins desmin and alpha-actinin, however, had the same distribution in ALD as they do in pectoral muscle. Quantitation of filamin and actin from the two muscle types showed that there was approximately 10 times as much filamin per actin in ALD myofibrils as in pectoral myofibrils. Filamin immunoprecipitated from ALD had an electrophoretic mobility in SDS polyacrylamide gels identical to that of pectoral myofibril filamin and slightly greater than that of chicken gizzard filamin. Two-dimensional peptide maps of filamin immunoprecipitated and labeled with 125I showed that ALD myofibril filamin was virtually identical to pectoral myofibril filamin and was distinct from chicken gizzard filamin.  相似文献   

15.
碱性调宁蛋白是一个首先从鸡砂囊和牛主动脉中分离出的相对分子质量为34×103的碱性蛋白。它在平滑肌中特异表达,结合钙调蛋白,肌动蛋白,肌球蛋白,抑制肌球蛋白的ATP酶活性,参与平滑肌收缩、细胞信号转导、维持细胞骨架、抑制细胞增生等。  相似文献   

16.
Partial tryptic cleavage products of pure actin from rabbit skeletal muscle and chicken gizzard are compared by two-dimensional electrophoresis in polyacrylamide gels with respect to isoelectric point and molecular weight. While the intact polypeptides (Mr 42,000) have different isoelectric points, two large cleavage products (Mr 35,000) generated from both both actin species have identical isoelectric points and identical molecular weights. These relatively trypsin-resistant cleavage products are presumably identical to the known "core actin" fragments which lack the aminoterminal region of the polypeptide chain. Therefore the differences that are responsible for the different isoelectric points of rabbit skeletal muscle actin and chicken gizzard actin seem to be restricted to the aminoterminal part of the actin polypeptide chains as was proposed on the basis of partial amino acid sequence data.  相似文献   

17.
Circular dichroic spectra of native, EDTA-treated and heat-denatured G-actin from chicken gizzard smooth muscle are virtually the same as those of rabbit skeletal muscle actin. The rates of changes produced by EDTA or heat in the secondary structure are, however, higher in the case of gizzard actin. Similar differences were found in the rates of inactivation as measured by loss of polymerizability during incubation with EDTA or Dowex 50. The results are explicable in terms of local differences in the conformation at specific site(s) important for maintaining the native state of actin monomer. Involvement of the ATP binding site was shown by measuring the equilibrium constant for the binding of ATP to the two actins. Difference in the conformation of some additional site(s) is indicated by a higher rate constant of inactivation of nucleotide-free actin observed for gizzard actin. No significant difference was found in the equilibrium constant for the binding of Ca2+ at the single high-affinity site in gizzard and skeletal muscle actin. Comparison of inactivation kinetics of actin from chicken gizzard, rabbit skeletal, bovine aorta, and bovine cardiac muscle suggests that the amino acid replacements Val-17----Cys-17 and/or Thr-89----Ser-89 have a destabilizing effect on the native conformation of G-actin. The results indicate that deletion of the acidic residue at position 1 of the amino acid sequence has no effect on the conformation of the ATP binding site and the high-affinity site for divalent cation as well.  相似文献   

18.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   

19.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin.  相似文献   

20.
Actin and tropomyosin of Cryptosporidium muris were localized by immunogold labeling. Two kinds of antibodies for actin labeling were used. The polyclonal antibody to skeletal muscle (chicken back muscle) actin was labeled on the pellicle and cytoplasmic vacuoles of parasites. The feeder organelle has showed a small amount of polyclonal actin antibody labeling as well. Whereas the monoclonal antibody to smooth muscle (chicken gizzard muscle) actin was chiefly labeled on the filamentous cytoplasm of parasites. The apical portion of host gastric epithelial cell cytoplasm was also labeled by smooth muscle actin together. The polyclonal antibody to tropomyosin was much more labeled at C. muris than host cells, so it could be easily identified even with low magnification (×2,000). The tropomyosin was observed along the pellicle, cytoplasmic vacuoles, and around the nucleus also. The skeletal muscle type actin seems to play a role in various cellular functions with tropomyosin in C. muris; on the other hand, the smooth muscle type actin was located mainly on the filamentous cytoplasm and supported the parasites'' firm attachment to host cells. Tropomyosin on the pellicle was thought to be able to stimulate the host as a major antigen through continuous shedding out by the escape of sporozoites or merozoites from their mother cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号