首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The crucial roles of Sec1/Munc18 (SM)‐like proteins in membrane fusion have been evidenced in genetic and biochemical studies. SM proteins interact directly with SNAREs and contribute to SNARE pairing by a yet unclear mechanism. Here, we show that the SM protein, Sly1, interacts directly with the conserved oligomeric Golgi (COG) tethering complex. The Sly1–COG interaction is mediated by the Cog4 subunit, which also interacts with Syntaxin 5 through a different binding site. We provide evidence that disruption of Cog4–Sly1 interaction impairs pairing of SNAREs involved in intra‐Golgi transport thereby markedly attenuating Golgi‐to‐ER retrograde transport. These results highlight the mechanism by which SM proteins link tethering to SNAREpin assembly.  相似文献   

2.
Short B  Barr FA 《Current biology : CB》2004,14(5):R187-R189
SNAREs are small coiled-coil proteins required for specific membrane fusion events in eukaryotic cells. Recent evidence points to the existence of an inhibitory class of SNAREs, i-SNAREs, which prevent incorrect fusions from occurring, adding a further layer of regulation to the process of membrane docking and fusion.  相似文献   

3.
p115 tethers coat protein (COP)I vesicles to Golgi membranes. The acidic COOH-terminal domain of p115 links the Golgins, Giantin on COPI vesicles, to GM130 on Golgi membranes. We now show that a SNARE motif-related domain within p115 stimulates the specific assembly of endogenous Golgi SNAREpins containing the t-SNARE, syntaxin 5. p115 catalyzes the construction of a cognate GOS-28-syntaxin-5 (v-/t-SNARE) complex by first linking the SNAREs to promote their direct interaction. These events are essential for NSF-catalyzed reassembly of postmitotic Golgi vesicles and tubules into mature cisternae. Staging experiments reveal that the linking of Golgins precedes SNAREpin assembly. Thus, p115 coordinates sequential tethering and docking of COPI vesicles by first using long tethers (Golgins) and then short tethers (SNAREs).  相似文献   

4.
Kim JY  Choi BK  Choi MG  Kim SA  Lai Y  Shin YK  Lee NK 《The EMBO journal》2012,31(9):2144-2155
Synaptotagmin-1 (Syt1) is a major Ca(2+) sensor for synchronous neurotransmitter release, which requires vesicle fusion mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Syt1 utilizes its diverse interactions with target membrane (t-) SNARE, SNAREpin, and phospholipids, to regulate vesicle fusion. To dissect the functions of Syt1, we apply a single-molecule technique, alternating-laser excitation (ALEX), which is capable of sorting out subpopulations of fusion intermediates and measuring their kinetics in solution. The results show that Syt1 undergoes at least three distinct steps prior to lipid mixing. First, without Ca(2+), Syt1 mediates vesicle docking by directly binding to t-SNARE/phosphatidylinositol 4,5-biphosphate (PIP(2)) complex and increases the docking rate by 10(3) times. Second, synaptobrevin-2 binding to t-SNARE displaces Syt1 from SNAREpin. Third, with Ca(2+), Syt1 rebinds to SNAREpin, which again requires PIP(2). Thus without Ca(2+), Syt1 may bring vesicles to the plasma membrane in proximity via binding to t-SNARE/PIP(2) to help SNAREpin formation and then, upon Ca(2+) influx, it may rebind to SNAREpin, which may trigger synchronous fusion. The results show that ALEX is a powerful method to dissect multiple kinetic steps in the vesicle fusion pathway.  相似文献   

5.
Energetics and dynamics of SNAREpin folding across lipid bilayers   总被引:3,自引:0,他引:3  
Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy-versus-distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (approximately 2-4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 k(B)T) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40-50 k(B)T).  相似文献   

6.
SNAREs constitute the core machinery of intracellular membrane fusion, but vesicular SNAREs localize to specific compartments via largely unknown mechanisms. Here, we identified an interaction between VAMP7 and SNAP-47 using a proteomics approach. We found that SNAP-47 mainly localized to cytoplasm, the endoplasmic reticulum (ER), and ERGIC and could also shuttle between the cytoplasm and the nucleus. SNAP-47 preferentially interacted with the trans-Golgi network VAMP4 and post-Golgi VAMP7 and -8. SNAP-47 also interacted with ER and Golgi syntaxin 5 and with syntaxin 1 in the absence of Munc18a, when syntaxin 1 is retained in the ER. A C-terminally truncated SNAP-47 was impaired in interaction with VAMPs and affected their subcellular distribution. SNAP-47 silencing further shifted the subcellular localization of VAMP4 from the Golgi apparatus to the ER. WT and mutant SNAP-47 overexpression impaired VAMP7 exocytic activity. We conclude that SNAP-47 plays a role in the proper localization and function of a subset of VAMPs likely via regulation of their transport through the early secretory pathway.  相似文献   

7.
The fusion of transport vesicles with their cognate target membranes, an essential event in intracellular membrane trafficking, is regulated by SNARE proteins and Rab GTPases. Rab GTPases are thought to act prior to SNAREs in vesicle docking, but the exact biochemical relationship between the two classes of molecules is not known. We recently identified the early endosomal autoantigen EEA1 as an effector of Rab5 in endocytic membrane fusion. Here we demonstrate that EEA1 interacts directly and specifically with syntaxin-6, a SNARE implicated in trans-Golgi network to early endosome trafficking. The binding site for syntaxin-6 overlaps with that of Rab5-GTP at the C terminus of EEA1. Syntaxin-6 and EEA1 were found to colocalize extensively on early endosomes, although syntaxin-6 is present in the trans-Golgi network as well. Our results indicate that SNAREs can interact directly with Rab effectors, and suggest that EEA1 may participate in trans-Golgi network to endosome as well as in endocytic membrane traffic.  相似文献   

8.
Regulated exocytosis requires the general membrane fusion machinery-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins. Using reconstituted giant unilamellar vesicles containing preassembled t-SNARE proteins (syntaxin 1·SNAP-25), we determined how Munc18-1 controls the docking, priming, and fusion of small unilamellar vesicles containing the v-SNARE VAMP2 and the Ca(2+) sensor synaptotagmin 1. In vitro assays allowed us to position Munc18-1 in the center of a sequential reaction cascade; vesicle docking by synaptotagmin 1 is a prerequisite for Munc18-1 to accelerate trans-SNARE complex (SNAREpin) assembly and membrane fusion. Complexin II stalls SNAREpin zippering at a late stage and, hence, contributes to synchronize membrane fusion in a Ca(2+)- and synaptotagmin 1-dependent manner. Thus, at the neuronal synapse, the priming factor Munc18-1 may accelerate the conversion of docked synaptic vesicles into a readily releasable pool by activating SNAREs for efficient membrane fusion.  相似文献   

9.
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them were ubiquitously expressed through out all tissues examined. A series of transient expression assays using green fluorescent protein (GFP) fused proteins revealed that most of the SNARE proteins were located on specific intracellular compartments: 6 in the endoplasmic reticulum, 9 in the Golgi apparatus, 4 in the trans-Golgi network (TGN), 2 in endosomes, 17 on the plasma membrane, 7 in both the prevacuolar compartment (PVC) and vacuoles, 2 in TGN/PVC/vacuoles, and 1 in TGN/PVC/plasma membrane. Some SNARE proteins showed multiple localization patterns in two or more different organelles, suggesting that these SNAREs shuttle between the organelles. Furthermore, the SYP41/SYP61-residing compartment, which was defined as the TGN, was not always located along with the Golgi apparatus, suggesting that this compartment is an independent organelle distinct from the Golgi apparatus. We propose possible combinations of SNARE proteins on all subcellular compartments, and suggest the complexity of the post-Golgi membrane traffic in higher plant cells.  相似文献   

10.
Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen.  相似文献   

11.
Distinct sets of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are distributed to specific intracellular compartments and catalyze membrane fusion events. Although the central role of these proteins in membrane fusion is established in nonplant systems, little is known about their role in the early secretory pathway of plant cells. Analysis of the Arabidopsis (Arabidopsis thaliana) genome reveals 54 genes encoding SNARE proteins, some of which are expected to be key regulators of membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. To gain insights on the role of SNAREs of the early secretory pathway in plant cells, we have cloned the Arabidopsis v-SNAREs Sec22, Memb11, Bet11, and the t-SNARE Sed5, and analyzed their distribution in plant cells in vivo. By means of live cell imaging, we have determined that these SNAREs localize at the Golgi apparatus. In addition, Sec22 was also distributed at the ER. We have then focused on understanding the function of Sec22 and Memb11 in comparison to the other SNAREs. Overexpression of the v-SNAREs Sec22 and Memb11 but not of the other SNAREs induced collapse of Golgi membrane proteins into the ER, and the secretion of a soluble secretory marker was abrogated by all SNAREs. Our studies suggest that Sec22 and Memb11 are involved in anterograde protein trafficking at the ER-Golgi interface.  相似文献   

12.
SNAREs on transport vesicles and target membranes are required for vesicle targeting and fusion. Here we describe a novel yeast protein with a typical SNARE motif but with low overall amino acid homologies to other SNAREs. The protein localized to the endoplasmic reticulum (ER) and was therefore named Use1p (unconventional SNARE in the ER). A temperature-sensitive use1 mutant was generated. use1 mutant cells accumulated the ER forms of carboxypeptidase Y and invertase. More specific assays revealed that use1 mutant cells were defective in retrograde traffic to the ER. This was supported by strong genetic interactions between USE1 and the genes encoding SNAREs in retrograde traffic to the ER. Antibodies directed against Use1p co-immunoprecipitated the SNAREs Ufe1p, myc-Sec20p and Sec22p, which form a SNARE complex required for retrograde traffic from the Golgi to the ER, but neither Bos1p nor Bet1p (members of the SNARE complex in anterograde traffic to the Golgi). Therefore, we conclude that Use1p is a novel SNARE protein that functions in retrograde traffic from the Golgi to the ER.  相似文献   

13.
Cottam NP  Ungar D 《Protoplasma》2012,249(4):943-955
The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.  相似文献   

14.
The GRIP domain, found in a family of coiled-coil peripheral membrane Golgi proteins, is a specific targeting sequence for the trans-Golgi network of animal cells. In this study we show that a coiled-coil protein with a GRIP domain occurs in the primitive eukaryote, Trypanosoma brucei, and that reporter proteins containing this domain can be used as a marker for the poorly characterized trans Golgi/trans-Golgi network of trypanosomatid parasites. The T. brucei GRIP domain, when fused to the carboxyl terminus of the green fluorescent protein (GFP-TbGRIP), was efficiently localized to the Golgi apparatus of transfected COS cells. Overexpression of GFP-TbGRIP in COS cells displaced the endogenous GRIP protein, GCC1p, from the Golgi apparatus indicating that the trypanosomatid and mammalian GRIP sequences interact with similar membrane determinants. GFP fusion proteins containing either the T. brucei GRIP domain or the human p230 GRIP (p230GRIP) domain were also expressed in the trypanosomatid parasite, Leishmania mexicana, and localized by fluorescence and immuno-electron microscopy to the trans face of the single Golgi apparatus and a short tubule that extended from the Golgi apparatus. Binding of GFP-p230GRIP to Golgi membranes in L. mexicana was abrogated by mutation of a critical tyrosine residue in the p230 GRIP domain. The levels of GFP-GRIP fusion proteins were dramatically reduced in stationary-phase L. mexicana promastigotes, suggesting that specific Golgi trafficking steps may be down-regulated as the promastigotes cease dividing. This study provides a protein marker for the trans-Golgi network of trypanosomatid parasites and suggests that the GRIP domain binds to a membrane component that has been highly conserved in eukaryotic evolution.  相似文献   

15.
Vesicular tethers and SNAREs are two key protein components that govern docking and fusion of intracellular membrane carriers in eukaryotic cells. The conserved oligomeric Golgi (COG) complex has been specifically implicated in the tethering of retrograde intra‐Golgi vesicles. Using yeast two‐hybrid and co‐immunoprecipitation approaches, we show that the COG6 subunit of the COG complex is capable of interacting with a subset of Golgi SNAREs, namely STX5, STX6, GS27 and SNAP29. Interaction with SNAREs is accomplished via the universal SNARE‐binding motif of COG6. Overexpression of COG6, or its depletion from cells, disrupts the integrity of the Golgi complex. Importantly, COG6 protein lacking the SNARE‐binding domain is deficient in Golgi binding, and is not capable of inducing Golgi complex fragmentation when overexpressed. These results indicate that COG6–SNARE interactions are important for both COG6 localization and Golgi integrity .  相似文献   

16.
Here we report that Yip1p and Yif1p, two members of an integral membrane protein complex that bind to the Rab Ypt1p, are required for membrane fusion with the Golgi in vitro. To block fusion, anti-Yip1p or anti-Yif1p antibodies must be added before vesicles bud from the endoplasmic reticulum (ER). These antibodies do not block the packaging of Yip1p, Yif1p, or the soluble NSF attachment protein receptor (SNAREs) into vesicles. We propose that Yip1p and Yif1p perform a critical role in establishing the fusion competence of ER to Golgi vesicles at the time of budding. Consistent with this proposal, we observe that the Yip1p.Yif1p complex binds to the ER to Golgi SNAREs Bos1p and Sec22p, two components of the membrane fusion machinery.  相似文献   

17.
The role of SNAREs in mammalian constitutive secretion remains poorly defined. To address this, we have developed a novel flow cytometry‐based assay for measuring constitutive secretion and have performed a targeted SNARE and Sec1/Munc18 (SM) protein‐specific siRNA screen (38 SNAREs, 4 SNARE‐like proteins and 7 SM proteins). We have identified the endoplasmic reticulum (ER)/Golgi SNAREs syntaxin 5, syntaxin 17, syntaxin 18, GS27, SLT1, Sec20, Sec22b, Ykt6 and the SM protein Sly1, along with the post‐Golgi SNAREs SNAP‐29 and syntaxin 19, as being required for constitutive secretion. Depletion of SNAP‐29 or syntaxin 19 causes a decrease in the number of fusion events at the cell surface and in SNAP‐29‐depleted cells causes an increase in the number of docked vesicles at the plasma membrane as determined by total internal reflection fluorescence (TIRF) microscopy. Analysis of syntaxin 19‐interacting partners by mass spectrometry indicates that syntaxin 19 can form SNARE complexes with SNAP‐23, SNAP‐25, SNAP‐29, VAMP3 and VAMP8, supporting its role in Golgi to plasma membrane transport or fusion. Surprisingly, we have failed to detect any requirement for a post‐Golgi‐specific R‐SNARE in this process.  相似文献   

18.
Characterization of mammalian NSF (G274E) and Drosophila NSF (comatose) mutants revealed an evolutionarily conserved NSF activity distinct from ATPase-dependent SNARE disassembly that was essential for Golgi membrane fusion. Analysis of mammalian NSF function during cell-free assembly of Golgi cisternae from mitotic Golgi fragments revealed that NSF disassembles Golgi SNAREs during mitotic Golgi fragmentation. A subsequent ATPase-independent NSF activity restricted to the reassembly phase is essential for membrane fusion. NSF/alpha-SNAP catalyze the binding of GATE-16 to GOS-28, a Golgi v-SNARE, in a manner that requires ATP but not ATP hydrolysis. GATE-16 is essential for NSF-driven Golgi reassembly and precludes GOS-28 from binding to its cognate t-SNARE, syntaxin-5. We suggest that this occurs at the inception of Golgi reassembly to protect the v-SNARE and regulate SNARE function.  相似文献   

19.
An in vitro transport assay, established with a modified Shiga toxin B subunit (STxB) as a marker, has proved to be useful for the study of transport from the early/recycling endosome (EE/RE) to the trans-Golgi network (TGN). Here, we modified this assay to test antibodies to all known soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that have been shown to localize in the Golgi and found that syntaxin 5, GS28, Ykt6, and GS15 antibodies specifically inhibited STxB transport. Because syntaxin 5, GS28, Ykt6, and GS15 exist as a unique SNARE complex, our observation indicates that these four SNAREs function as a complex in EE/RE-TGN transport. The importance of GS15 in EE/RE-TGN transport was further demonstrated by a block in recombinant STxB transport in HeLa cells when GS15 expression was knocked down by its small interfering iRNA. Morphological analyses showed that some GS15 and Ykt6 were redistributed from the Golgi to the endosomes when the recycling endosome was perturbed by SNX3-overexpression, suggesting that GS15 and Ykt6 might cycle between the endosomes and the Golgi apparatus. Further studies indicated that syntaxin 5 and syntaxin 16 exerted their role in EE/RE-TGN transport in an additive manner. The kinetics of inhibition exhibited by syntaxin 16 and syntaxin 5 antibodies is similar.  相似文献   

20.
The fungal drug brefeldin A (BFA) has recently been found to induce a redistribution of medial- and cis-Golgi components to the endoplasmic reticulum (ER), raising the possibility of the existence of a retrograde pathway from the Golgi complex to the ER. Here, we demonstrate a BFA-induced reversible rearrangement of the trans-Golgi membrane protein galactosyltransferase (Gal-T) to the ER in HeLa cells. With immunofluorescence microscopy we have shown that BFA first caused a rapid change of Gal-T immunolabelling from a normal Golgi complex pattern to long and slender structures emanating from the cell centre and co-localizing with tubulin. Then immunofluorescence became ER-like. This effect was not dependent on ongoing protein synthesis and was reversed to normal within 120 min after removal of the drug. Restoration of the Golgi complex after removal of brefeldin A was energy-dependent but not mediated by microtubules nor dependent on protein synthesis. BFA-induced backflow of Gal-T was inhibited by nocodazole, a microtubule-disrupting agent. Immunoelectron microscopy showed that BFA treatment resulted in the fusion of Gal-T-containing vesicles with the ER. Furthermore, sucrose gradient centrifugation showed a significant shift in density of mature Gal-T polypeptides upon BFA treatment: about 40% of the enzyme migrated from its original density (1.13 g/ml) to the density of rough ER (1.19 g/ml). Thus, BFA caused microtubule-dependent vesicular backflow from a trans-Golgi component to the ER followed by fusion of the Golgi-derived vesicles with the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号